Soit un groupe compact, connexe et non-abélien. Il est bien connu que le groupe dual peut ne pas contenir des sous-ensembles de type Sidon, infinis et centraux, mais on y trouve toujours, pour chaque , des sous-ensembles de type -Sidon qui sont aussi infinis et centraux. On montre, par une méthode essentiellement constructive, que les ensembles infinis centraux de type -Sidon se trouvent aussi dans chaque sous-ensemble infini de . Aussi étudions-nous, pour un groupe de Lie compact, la connexion entre sa sidonicité centrale et la sidonicité de son tore.
It is known that the dual of a compact, connected, non-abelian group may contain no infinite central Sidon sets, but always does contain infinite central -Sidon sets for We prove, by an essentially constructive method, that the latter assertion is also true for every infinite subset of the dual. In addition, we investigate the relationship between weighted central Sidonicity for a compact Lie group and Sidonicity for its torus.
@article{AIF_1995__45_2_547_0, author = {Hare, Kathryn E.}, title = {Central sidonicity for compact Lie groups}, journal = {Annales de l'Institut Fourier}, volume = {45}, year = {1995}, pages = {547-564}, doi = {10.5802/aif.1464}, mrnumber = {96i:43004}, zbl = {0820.43003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1995__45_2_547_0} }
Hare, Kathryn E. Central sidonicity for compact Lie groups. Annales de l'Institut Fourier, Tome 45 (1995) pp. 547-564. doi : 10.5802/aif.1464. http://gdmltest.u-ga.fr/item/AIF_1995__45_2_547_0/
[1] A structural criterion for the existence of infinite Sidon sets, Pacific J. Math., 96 (1981), 301-317. | MR 83c:43009 | Zbl 0445.43006
and ,[2] Central multiplier theorems for compact Lie groups, Bull. Amer. Math. Soc., 80 (1974), 124-126. | MR 48 #9271 | Zbl 0276.43009
and ,[3] Central lacunary sets for Lie groups, J. Aust. Math. Soc., 45 (1988), 30-45. | MR 89j:43007 | Zbl 0689.43003
,[4] Zeroes of group characters, Math. Z., 87 (1965), 363-364. | MR 31 #276 | Zbl 0128.25602
,[5] Weighted p-Sidon sets, J. Aust. Math. Soc., to appear. | Zbl 0874.43005
and ,[6] Abstract harmonic analysis II, Springer-Verlag, New York, 1970. | Zbl 0213.40103
and ,[7] Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972. | MR 48 #2197 | Zbl 0254.17004
,[8] Sidon sets, Lecture Notes Pure Appl. Math., No. 13, Marcel Dekker, New York, 1975. | MR 55 #13173 | Zbl 0351.43008
and ,[9] Central Sidon and central Λ(p) sets, J. Aust. Math. Soc., 14 (1972), 62-74. | MR 47 #9178 | Zbl 0237.43004
,[10] Lie groups and compact groups, London Math. Soc. Lecture Note Series No.25, Cambridge Univ. Press, Cambridge, 1977. | MR 56 #8743 | Zbl 0348.22001
,[11] Central measures on compact simple Lie groups, J. Func. Anal., 10 (1972), 212-229. | MR 49 #5715 | Zbl 0286.43002
,[12] Central lacunary sets, Monatsh. Math., 76 (1972), 328-338. | MR 51 #3801 | Zbl 0258.43008
,[13] Polyhedral summability of Fourier series on compact Lie groups, Amer. J. Math., 100 (1978), 477-493. | MR 58 #29855 | Zbl 0421.43009
and ,[14] Lie groups, Lie algebras and their representations, Springer-Verlag, New York, 1984. | Zbl 0955.22500
,