Hörmander a caractérisé les opérateurs différentiels à coefficients constants sur l’espace des fonctions analytiques réelles sur par une condition du type Phragmén-Lindelöf. On donne des conséquences géométriques de cette condition et, pour les opérateurs homogènes, de la condition analogue pour les classes de Gevrey.
Hörmander has characterized the surjective constant coefficient partial differential operators on the space of all real analytic functions on by a Phragmén-Lindelöf condition. Geometric implications of this condition and, for homogeneous operators, of the corresponding condition for Gevrey classes are given.
@article{AIF_1995__45_1_223_0, author = {Braun, R\"udiger W.}, title = {The surjectivity of a constant coefficient homogeneous differential operator in the real analytic functions and the geometry of its symbol}, journal = {Annales de l'Institut Fourier}, volume = {45}, year = {1995}, pages = {223-249}, doi = {10.5802/aif.1454}, mrnumber = {96e:35025}, zbl = {0816.35007}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1995__45_1_223_0} }
Braun, Rüdiger W. The surjectivity of a constant coefficient homogeneous differential operator in the real analytic functions and the geometry of its symbol. Annales de l'Institut Fourier, Tome 45 (1995) pp. 223-249. doi : 10.5802/aif.1454. http://gdmltest.u-ga.fr/item/AIF_1995__45_1_223_0/
[1] Propagation of analyticity of solutions of partial differential equations with constant coefficients, Ark. Mat., 8 (1971), 277-302. | MR 45 #8986 | Zbl 0211.40502
,[2] Géométrie algébrique réelle, Ergebnisse Math. Grenzgebiete 3. Folge 12, Springer, Berlin 1987. | MR 90b:14030 | Zbl 0633.14016
, , ,[3] Hörmander's Phragmén-Lindelöf principle and irreducible singularities of codimension 1, Boll. Un. Mat. Ital., (7), 6-A (1992), 339-348. | MR 94b:35012 | Zbl 0777.35020
,[4] Surjektivität partieller Differentialoperatoren auf Roumieu-Klassen, Habilitationsschrift, Düsseldorf, 1993.
,[5] Ultradifferentiable functions and Fourier analysis, Result. Math., 17 (1990), 206-237. | MR 91h:46072 | Zbl 0735.46022
, , ,[6] Applications of the projective limit functor to convolution and partial differential equations, in Advances in the Theory of Fréchet-Spaces, T. Terzioǧlu (Ed.), Istanbul 1987, NATO ASI Series C, Vol. 287, Kluwer, Dordrecht 1989, 29-46. | MR 92b:46119 | Zbl 0726.46022
, , ,[7] Characterization of the linear partial differential operators with constant coefficients which are surjective on non-quasianalytic classes of Roumieu type on ℝN, Math. Nachrichten, 168 (1994), 19-54. | MR 95g:35004 | Zbl 0848.35023
, , ,[8] Solutions in Gevrey spaces of partial differential equations with constant coefficients, in Analytic Solutions of Partial Differential Equations, L. Cattabriga (Ed.), Trento 1981, Astérisque, 89/90 (1981), 129-151. | MR 84h:35030 | Zbl 0496.35018
,[9] On the surjectivity of differential polynomials on Gevrey spaces, in Atti del Convegno : “Linear Partial and Pseudodifferential Operators” Rendiconti del Seminario Matematico, Fascicolo Speziale. Torino, Università e Politecnico, 1983, 81-89. | MR 85f:35046 | Zbl 0561.35008
,[10] Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti, Boll. Un. Mat. Ital., (4) 4 (1971), 1015-1027.
, ,[11] On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math., 21 (1973), 151-183. | MR 49 #817 | Zbl 0282.35015
,[12] The Analysis of Linear Partial Differential Operators II, Grundlehren 257, Springer, Berlin, 1983. | MR 85g:35002b | Zbl 0521.35002
,[13] An Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1990. | Zbl 0685.32001
,[14] Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse, Ann. Inst. Fourier, 40-3 (1990), 619-655. | Numdam | MR 92e:46083 | Zbl 0703.46025
, , ,[15] Continuous linear right inverses for partial differential operators with constant coefficients and Phragmén-Lindelöf conditions, in “Functional Analysis”, K.D. Bierstedt, A. Pietsch, W. Ruess, D. Vogt (Eds.), Marcel Dekker, New York 1993, 357-389. | Zbl 0806.46041
, , ,[16] Phragmén-Lindelöf principles on algebraic varieties, J. Amer. Math. Soc., to appear. | Zbl 0896.32008
, , ,[17] Introduction to the Theory of Analytic Spaces, LNM 25, Springer, Berlin, 1966. | MR 36 #428 | Zbl 0168.06003
,[18] Eindeutige analytische Funktionen, Grundlehren 46, Springer, Berlin, 1974. | MR 49 #9165 | Zbl 0278.30002
,[19] A criterion for splitness of differential complexes with constant coefficients, in Geometric and Algebraic Aspects in Several Complex Variables, C.A. Berenstein, D.C. Struppa (Eds.), EditEl 1991, 265-291. | MR 94d:58137 | Zbl 01648038
,[20] Non-surjectivity of the Cauchy-Riemann operator on the space of the analytic functions on ℝN, Boll. Un. Mat. Ital., (4) 7 (1973), 12-28. | MR 48 #4480 | Zbl 0264.35003
,[21] Complex Analytic Varieties, Addison-Wesley, Reading (Mass.), 1972. | MR 52 #8473 | Zbl 0265.32008
,[22] An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear partial differential equations, Boll. Un. Mat. Ital., (6) 5-B (1986), 361-392. | MR 88a:35044 | Zbl 0624.35011
,