Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann ζ-function
Nikolski, Nikolai
Annales de l'Institut Fourier, Tome 45 (1995), p. 143-159 / Harvested from Numdam

On démontre qu’un sous-espace d’un espace de Hilbert de fonctions holomorphes est complètement défini par ses distances aux noyaux reproduisants. Une méthode simple est proposée pour localiser les zéros simultanés d’un sous-espace de l’espace de Hardy. À titre d’illustration on montre une famille de disques du plan complexe sans zéro de la fonction ζ de Riemann.

It is proved that a subspace of a holomorphic Hilbert space is completely determined by their distances to the reproducing kernels. A simple rule is established to localize common zeros of a subspace of the Hardy space of the unit disc. As an illustration we show a series of discs of the complex plan free of zeros of the Riemann ζ-function.

@article{AIF_1995__45_1_143_0,
     author = {Nikolski, Nikolai},
     title = {Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann $\zeta $-function},
     journal = {Annales de l'Institut Fourier},
     volume = {45},
     year = {1995},
     pages = {143-159},
     doi = {10.5802/aif.1451},
     mrnumber = {96c:47005},
     zbl = {0816.30026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1995__45_1_143_0}
}
Nikolski, Nikolai. Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann $\zeta $-function. Annales de l'Institut Fourier, Tome 45 (1995) pp. 143-159. doi : 10.5802/aif.1451. http://gdmltest.u-ga.fr/item/AIF_1995__45_1_143_0/

[B] A. Beurling, A closure problem related to the Riemann zeta-function, Proc. Nat. Acad. USA, 41, n° 5 (1995), 312-314. | MR 17,15a | Zbl 0065.30303

[DSS] P. Duren, H. Shapiro and A. Shields, Singular measures and domains not of Smirnov type, Duke Math. Journal, 33 (1966), 247-254. | MR 33 #7506 | Zbl 0174.37501

[H] H. Hedenmalm, A factorization theorem for square area-integrable analytic functions, J. reine angew. Math., 422 (1991), 45-68. | MR 93c:30053 | Zbl 0734.30040

[He] H. Hedenmalm, An invariant subspace of the Bergman space having the codimension two property, J. reine angew. Math., 443 (1993), 1-9. | Zbl 0783.30040

[Ho] K. Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, NJ, 1962. | MR 24 #A2844 | Zbl 0117.34001

[K] B. Korenblum, Closed ideals of the ring An, Functional Analysis and its applications, 6, n° (1972), 38-52. | MR 48 #2776 | Zbl 0262.46053

[Ko] B. Korenblum, A Beurling type theorem, Acta Math., 138 (1977), 265-293. | MR 56 #5894 | Zbl 0354.30024

[KR] T.L. Kriete and M. Rosenblum, A Phragmén-Lindelöf theorem with applications to M(u, v) functions, Pacific J. Math., 43 (1972), 175-188. | MR 47 #3670 | Zbl 0251.30019

[N] N.K. Nikolski, Treatise on the shift operator, Springer-Verlag, Heidelberg, 1986.

[Ni] N.K. Nikolski, Invitation aux techniques des espaces de Hardy, EDM, Université Bordeaux-1, 1992, p. 1-69.

[Nik] N.K. Nikolski, Two problems on spectral synthesis, Lect. Notes Math., Springer-Verlag, 1043 (1984), 378-381.

[Ny] B. Nyman, On some groups and semi-groups of translations, Thesis, Uppsala, 1950.

[Sh] N. Shirokov, Analytic functions smooth up to the boundary, Lect. Notes Math., v. 1312, Springer-Verlag, 1988. | MR 947146 | MR 90h:30087 | Zbl 0656.30029

[V] V.I. Vasyunin, On a biorthogonal function system related to the Riemann hypothesis, Algebra i Analiz (St. Petersburg Math. J.), to appear. | MR 1353492 | Zbl 0851.11051