On montre que l’ensemble des matrices tridiagonales périodiques symétriques de spectre fixé possède une direction tangente privilégiée, construite à l’aide des vecteurs propres des matrices et de la jacobienne d’une courbe hyperelliptique. Il se trouve que cette direction est celle du célèbre flot de Toda périodique.
It is shown that the set of symmetric tridiagonal periodic Jacobi matrices of given spectrum has a preferred tangent vector field, constructed using the eigenvectors of the matrices and the Jacobian of a hyperelliptic curve. It turns out that this preferred vector field is the infinitesimal operator of the celebrated periodic Toda flow.
@article{AIF_1994__44_5_1505_0, author = {Audin, Mich\`ele}, title = {Vecteurs propres de matrices de Jacobi}, journal = {Annales de l'Institut Fourier}, volume = {44}, year = {1994}, pages = {1505-1517}, doi = {10.5802/aif.1443}, mrnumber = {96e:58068}, zbl = {0816.58020}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1994__44_5_1505_0} }
Audin, Michèle. Vecteurs propres de matrices de Jacobi. Annales de l'Institut Fourier, Tome 44 (1994) pp. 1505-1517. doi : 10.5802/aif.1443. http://gdmltest.u-ga.fr/item/AIF_1994__44_5_1505_0/
[1] The Toda lattice, Dynkin diagrams, singularities and Abelian varieties, Invent. Math., 103 (1991), 223-278. | MR 91m:14071 | Zbl 0735.14031
, ,[2] Complex Abelian varieties, Grundlehren der math. Wissenschaften, Springer, 1992. | Zbl 0779.14012
, ,[3] The spectrum of difference operators and algebraic curves, Acta Math., 143 (1979), 93-154. | MR 80e:58028 | Zbl 0502.58032
, ,[4] Reduction of Hamiltonian systems, affine Lie algebras and Lax equations II, Invent. Math., 63 (1981), 423-432. | MR 82k:58049 | Zbl 0442.58016
, ,[5] Linearising two-dimensional integrable systems and the construction of action-angle variables, Math. Z., 211 (1992), 265-313. | MR 93k:58125 | Zbl 0758.58011
,