Homogenization of codimension 1 actions of n near a compact orbit
Craizer, Marcos
Annales de l'Institut Fourier, Tome 44 (1994), p. 1435-1448 / Harvested from Numdam

Soit Φ une n -action C sur une variété orientable de dimension n+1. Supposons que Φ possède une orbite compacte isolée T et soit W un petit voisinage tubulaire de T. À l’aide d’un changement de variables C , nous pouvons écrire W= n / n ×I et T= n / n ×[0], où I est un intervalle réel contenant 0.

Dans ce travail nous montrons que par un changement de variables C 0 , qui est C au-dehors de T, nous pouvons rendre Φ |W invariante par les transformations du type (x,z)(x+a,z),a n , où x n / n et zI. Comme corollaire nous pouvons décrire complètement la dynamique de Φ sur W.

Let Φ be a C n -action on an orientable (n+1)-dimensional manifold. Assume Φ has an isolated compact orbit T and let W be a small tubular neighborhood of it. By a C change of variables, we can write W= n / n ×I and T=𝕋 n ×[0], where I is some interval containing 0.

In this work, we show that by a C 0 change of variables, C outside T, we can make Φ |W invariant by transformations of the type (x,z)(x+a,z),a n , where x n / n and zI. As a corollary one cas describe completely the dynamics of Φ in W.

@article{AIF_1994__44_5_1435_0,
     author = {Craizer, Marcos},
     title = {Homogenization of codimension 1 actions of ${\mathbb {R}}^n$ near a compact orbit},
     journal = {Annales de l'Institut Fourier},
     volume = {44},
     year = {1994},
     pages = {1435-1448},
     doi = {10.5802/aif.1440},
     mrnumber = {95m:58100},
     zbl = {0820.34021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1994__44_5_1435_0}
}
Craizer, Marcos. Homogenization of codimension 1 actions of ${\mathbb {R}}^n$ near a compact orbit. Annales de l'Institut Fourier, Tome 44 (1994) pp. 1435-1448. doi : 10.5802/aif.1440. http://gdmltest.u-ga.fr/item/AIF_1994__44_5_1435_0/

[1] J.L. Arraut and M. Craizer, A characterization of 2-dimensional foliations of rank 2 on compact orientable 3-manifolds, preprint.

[2] G. Chatelet, H. Rosenberg and D. Weil, A classification of the topological types of ℝ2-actions on closed orientable 3-manifolds, Publ. Math. IHES, 43 (1973), 261-272. | Numdam | MR 49 #11533 | Zbl 0278.57015

[3] N. Koppel, Commuting diffeomorphisms. Global Analysis, Proc. of Symp. in Pure Math., AMS, XIV (1970). | Zbl 0225.57020

[4] R. Mañé, Ergodic theory and differentiable dynamics, Springer-Verlag, 1987. | MR 88c:58040 | Zbl 0616.28007

[5] F. Sergeraert, Feuilletages et difféomorphismes infiniment tangents à l'identité, Inv. Math., 39 (1977), 253-275. | MR 57 #13973 | Zbl 0327.58004

[6] G. Szekeres, Regular iteration of real and complex functions, Acta Math., 100 (1958), 163-195. | MR 21 #5744 | Zbl 0145.07903