On généralise un résultat de M. Tamm :
Soit , , définissable dans le corps ordonné des nombres réels augmenté par toutes les fonctions analytiques réelles sur les cubes compacts et toutes les puissances , . Alors, il existe telle que pour chaque , la fonction est dans un voisinage de si et seulement si est analytique dans un voisinage de .
We extend a result of M. Tamm as follows:
Let , be definable in the ordered field of real numbers augmented by all real analytic functions on compact boxes and all power functions . Then there exists such that for all , if is in a neighborhood of , then is real analytic in a neighborhood of .
@article{AIF_1994__44_5_1367_0, author = {Dries, Lou van den and Miller, Chris}, title = {Extending Tamm's theorem}, journal = {Annales de l'Institut Fourier}, volume = {44}, year = {1994}, pages = {1367-1395}, doi = {10.5802/aif.1438}, mrnumber = {96g:32016}, zbl = {0816.32004}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1994__44_5_1367_0} }
Dries, Lou van den; Miller, Chris. Extending Tamm's theorem. Annales de l'Institut Fourier, Tome 44 (1994) pp. 1367-1395. doi : 10.5802/aif.1438. http://gdmltest.u-ga.fr/item/AIF_1994__44_5_1367_0/
[AM] Reduction theorem for divergent power series, J. Reine Angew. Math., 241 (1970), 27-33. | MR 41 #3800 | Zbl 0191.04403
and ,[BM] Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42. | Numdam | MR 89k:32011 | Zbl 0674.32002
and ,[BS] Analytic functions in topological vector spaces, Studia Math., 39 (1971), 77-112. | MR 47 #2365 | Zbl 0214.37703
and ,[DD] p-adic and real subanalytic sets, Ann. of Math., 128 (1988), 79-138. | MR 89k:03034 | Zbl 0693.14012
and ,[D1] Remarks on Tarski's problem concerning (ℝ, +, ., exp), Logic Colloquium 1982, eds. G. Lolli, G. Longo and A. Marcja, North Holland, Amsterdam (1984), 97-121. | MR 86g:03052 | Zbl 0585.03006
,[D2] A generalization of the Tarski-Seidenberg theorem and some nondefinability results, Bull. Amer. Math. Soc. (N.S.), 15 (1986), 189-193. | MR 88b:03048 | Zbl 0612.03008
,[D3] Tame topology and o-minimal structures, (monograph in preparation). | Zbl 0953.03045
,[DMM] The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., 140 (1994), 183-205. | MR 95k:12015 | Zbl 0837.12006
, and ,[DM] On the real exponential field with restricted analytic functions, Israel J. Math., 85 (1994), 19-56. | MR 95e:03099 | Zbl 0823.03017
and ,[H] Semi-algebraic local triviality in semi-algebraic mappings, Amer. J. Math., 102 (1980), 291-302. | MR 81d:32012 | Zbl 0465.14012
,[KPS] Definable sets in ordered structures. II, Trans. Amer. Math. Soc., 295 (1986), 593-605. | MR 88b:03050b | Zbl 0662.03024
, and ,[KR] Ensembles sous-analytiques: quelques propriétés globales, C. R. Acad. Sci. Paris, Sér. I Math., 308 (1989), 521-523. | MR 90d:32016 | Zbl 0674.32003
and ,[K] Points réguliers d'un sous-analytique, Ann. Inst. Fourier (Grenoble), 38-1 (1988), 133-156. | Numdam | MR 89g:32010 | Zbl 0619.32007
,[M1] Exponentiation is hard to avoid, Proc. Amer. Math. Soc., 122 (1994), 257-259. | MR 94k:03042 | Zbl 0808.03022
,[M2] Expansions of the real field with power functions, Ann. Pure Appl. Logic, 68 (1994), 79-94. | MR 95i:03081 | Zbl 0823.03018
,[M3] Infinite differentiability in polynomially bounded o-minimal structures, Proc. Amer. Math. Soc., (to appear). | Zbl 0823.03019
,[P] Le théorème de Puiseux pour une application sous-analytique, Bull. Polish Acad. Sci. Math., 32 (1984), 556-560. | MR 86j:32015 | Zbl 0574.32010
,[PS] Definable sets in ordered structures. I, Trans. Amer. Math. Soc., 295 (1986), 565-592. | MR 88b:03050a | Zbl 0662.03023
and ,[T] Subanalytic sets in the calculus of variations, Acta Math., 146 (1981), 167-199. | MR 82h:32012 | Zbl 0478.58010
,[To] Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskii, Ann. Inst. Fourier (Grenoble), 41-4 (1991), 823-840. | Numdam | MR 93f:32005 | Zbl 0786.32011
,[W] Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, Jour. Amer. Math. Soc., (to appear). | Zbl 0892.03013
,