On considère les feuilletages holomorphes singuliers de codimension 1 dans le projectif complexe de dimension qui admettent une composante de Kupka compacte . On montre que les classes de Chern du fibré tangent à se comportent comme les classes de Chern d’une intersection complète et, comme corollaire, on déduit que est une intersection complète dans certains cas.
We will consider codimension one holomorphic foliations represented by sections , and having a compact Kupka component . We show that the Chern classes of the tangent bundle of behave like Chern classes of a complete intersection 0 and, as a corollary we prove that is a complete intersection in some cases.
@article{AIF_1994__44_4_1219_0, author = {Calvo-Andrade, Omegar and Soares, Marcio G.}, title = {Chern numbers of a Kupka component}, journal = {Annales de l'Institut Fourier}, volume = {44}, year = {1994}, pages = {1219-1236}, doi = {10.5802/aif.1431}, mrnumber = {95m:32045}, zbl = {0811.32024}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1994__44_4_1219_0} }
Calvo-Andrade, Omegar; Soares, Marcio G. Chern numbers of a Kupka component. Annales de l'Institut Fourier, Tome 44 (1994) pp. 1219-1236. doi : 10.5802/aif.1431. http://gdmltest.u-ga.fr/item/AIF_1994__44_4_1219_0/
[B] Some properties of stable rank-2 vector bundles on Pn, Math. Ann., 226 (1977), 125-150. | MR 55 #2905 | Zbl 0332.32021
,[BB] Singularities of holomorphic foliations, Journal on Differential Geometry, 7 (1972), 279-342. | MR 51 #14092 | Zbl 0268.57011
, ,[BCh] On smooth subcanonical varieties of codimension 2 in Pn n ≥ 4, Annali di Matematica, (1983), 99-117. | MR 86d:14047 | Zbl 0549.14015
, ,[CL] Codimension one holomorphic foliations with Kupka components.
, ,[GS] Komplexe Unterräume und holomorphe Vektorraumbündel von Rang zwei, Math. Ann., 230 (1977), 75-90. | MR 58 #1279 | Zbl 0412.32014
, ,[GH] Principles of Algebraic Geometry, Pure & Applied Math., Wiley Intersc., New York, 1978. | Zbl 0408.14001
, ,[G] Topologie algébrique et théorie de faisceaux, Actualités Scientifiques et Industrielles, Herman, Paris, 1952.
,[GML] A structural stability of foliations with a meromorphic first integral, Topology, 30 (1990), 315-334. | Zbl 0735.57014
, ,[H] Varieties of small codimension in projective space, Bull. of the AMS, 80 (1974), 1017-1032. | MR 52 #5688 | Zbl 0304.14005
,[H1] Stable vector bundles of rank 2 on P3, Math. Ann., 238 (1978), 229-280. | MR 80c:14011 | Zbl 0411.14002
,[HS] A computer aided approach to codimension 2 subvarieties of Pn, n ≥ 6, J. Reine Angew. Math., 357 (1985), 205-220. | MR 86m:14036 | Zbl 0581.14035
, ,[M] Structural stability of integrable differential forms, Geometry and Topology, LNM, Springer, New York, 1977, pp. 395-428. | MR 56 #9561 | Zbl 0363.58007
,[OSS] Vector Bundles on Complex Projective spaces, Progress in Math., 3, Birkhauser, Basel, 1978.
, , ,[R] On projective varieties of codimension 2, Invent. Math., 73 (1983), 333-336. | MR 85g:14063 | Zbl 0521.14018
,