Étant donné des entiers et une constante , on considère l’espace des -uples de polynômes réels à variables, de degré , à coefficients en valeur absolue, et satisfaisant à . On étudie la famille des fonctions algébriques, où est un polynôme et ne dépendant que de . Le résultat principal est un théorème quantitatif d’extension de ces fonctions qui est uniforme par rapport à . Ce résultat est utilisé pour obtenir des inégalités, uniformes par rapport à , du type de celle de Bernstein.
La démonstration s’appuie sur des résultats quantitatifs concernant les idéaux de polynômes et sur la théorie des ensembles semi-algébriques.
Given integers and a constant , consider the space of -tuples of real polynomials in variables of degree , whose coefficients are in absolute value, and satisfying . We study the family of algebraic functions, where is a polynomial, and being a constant depending only on . The main result is a quantitative extension theorem for these functions which is uniform in . This is used to prove Bernstein-type inequalities which are again uniform with respect to .
The proof is based on some quantitative results on ideals of polynomials and on the theory of semi-algebraic sets.
@article{AIF_1994__44_4_1091_0, author = {Feffermann, Charles and Narasimhan, Raghavan}, title = {On the polynomial-like behaviour of certain algebraic functions}, journal = {Annales de l'Institut Fourier}, volume = {44}, year = {1994}, pages = {1091-1179}, doi = {10.5802/aif.1428}, mrnumber = {95k:32011}, zbl = {0811.14046}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1994__44_4_1091_0} }
Feffermann, Charles; Narasimhan, Raghavan. On the polynomial-like behaviour of certain algebraic functions. Annales de l'Institut Fourier, Tome 44 (1994) pp. 1091-1179. doi : 10.5802/aif.1428. http://gdmltest.u-ga.fr/item/AIF_1994__44_4_1091_0/
[A] The membership problem for smooth ideals, (to appear in Publ. de l'I.H.P., Sém. de théorie des nombres).
,[BCR] Géométrie algébrique réelle, Springer, 1987. | MR 90b:14030 | Zbl 0633.14016
, and ,[BT] On the geometry of interpolating varieties, Sém. Lelong-Skoda (1980-1981), Springer Lecture Notes in Math., vol. 919, 1-25. | MR 83k:32004 | Zbl 0484.32004
and ,[BY] Ideals generated by exponential polynomials, Advances in Math., vol. 60 (1986), 1-80. | MR 87i:32005 | Zbl 0586.32019
and ,[C] Decision Procedures for Real and p-adic Fields, Comm. Pure Appl. Math., vol. 22 (1969), 131-151. | MR 39 #5342 | Zbl 0167.01502
,[FN] Bernstein's Inequality on Algebraic Curves, Annales de l'Inst. Fourier, vol. 43-5 (1993), 1319-1348. | Numdam | MR 95e:32007 | Zbl 0842.26013
and ,[FS] Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., vol. 27 (1974), 429-522. | MR 51 #3719 | Zbl 0293.35012
and ,[He] Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Annalen, vol. 93 (1926), 736-788. | JFM 52.0127.01
,[H] An Introduction to Complex Analysis in Several Variables, 2nd edition, Amsterdam, North-Holland, 1973. | Zbl 0271.32001
,[KT] Finitely generated ideals in rings of analytic functions, Math. Annalen, vol. 193 (1971), 225-237. | MR 46 #2077 | Zbl 0207.12906
and ,[M] Algebraic Geometry I. Complex Projective Varieties, Springer, 1976. | Zbl 0356.14002
,[NSW] Balls and metrics defined by vector fields I. Basic properties, Acta Math., vol. 155 (1985), 103-147. | MR 86k:46049 | Zbl 0578.32044
, and ,[P] Subunit Balls for Symbols of Pseudodifferential Operators, Princeton Doctoral Dissertation, 1992 (to appear in Advances in Math.). | Zbl 0940.35214
,[RS] Hypoelliptic differential operators and nilpotent groups, Acta Math., vol. 137 (1976), 247-320. | MR 55 #9171 | Zbl 0346.35030
and ,[W] Elementary structure of real algebraic varieties, Annals of Math., vol. 66 (1957), 545-556. | MR 20 #2342 | Zbl 0078.13403
,