Nous considérons le groupe de monodromie de l’équation différentielle de Pochhammer . Soit l’équation réduite modulo un nombre premier . Alors, on montre que est fini si et seulement si admet un système fondamental de solutions polynomiales pour presque tous les nombres premiers.
We consider the monodromy group of the Pochhammer differential equation . Let be the reduce equation modulo a prime . Then we show that is finite if and only if has a full set of polynomial solutions for almost all primes .
@article{AIF_1994__44_3_767_0, author = {Haraoka, Yoshishige}, title = {Finite monodromy of Pochhammer equation}, journal = {Annales de l'Institut Fourier}, volume = {44}, year = {1994}, pages = {767-810}, doi = {10.5802/aif.1417}, mrnumber = {96c:33018}, zbl = {0812.33006}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1994__44_3_767_0} }
Haraoka, Yoshishige. Finite monodromy of Pochhammer equation. Annales de l'Institut Fourier, Tome 44 (1994) pp. 767-810. doi : 10.5802/aif.1417. http://gdmltest.u-ga.fr/item/AIF_1994__44_3_767_0/
[1] Monodromy for the hypergeometric function nFn-1, Invent. Math., 95 (1989), 325-354. | MR 90f:11034 | Zbl 0663.30044
, ,[2] Applications of Padé approximations to the Grothendieck conjecture on linear differential equations. Lecture Notes in Math. 1135, 52-100, Springer, 1985. | MR 87d:11053 | Zbl 0565.14010
, ,[3] Number theoretic study of Pochhammer equation. Publ. Math. de l'Université de Paris VI, Problèmes diophantiens, 93 (1989/1990).
,[4] Canonical forms of differential equations free from accessory parameters. to appear in SIAM J. Math. Anal. | Zbl 0809.34009
,[5] Algebraic differential equations, INDAM Symposia Math., XXIV (1981), 169-204. | MR 83j:14010 | Zbl 0464.12013
,[6] Ordinary differential equations, New York, 1926.
,[7] From Gauss to Painlevé : A modern theory of special functions, Vieweg, 1991. | Zbl 0743.34014
, , , ,[8] Nilpotent connections and the monodromy theorem : application of a result of Turrittin, Publ. Math. I.H.E.S., 39 (1970), 355-412. | Numdam | MR 45 #271 | Zbl 0221.14007
,[9] Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118. | MR 49 #2728 | Zbl 0278.14004
,[10] Eine Angewendung des Eisensteinschen Satz auf die Theorie der Gausschen Differentialgleichung. J. Reine Angew. Math. 127, 92-102 (1904) ; repreinted in Collected Works, vol. II, 98-108, Thales Verlag, Essen, 1987. | JFM 35.0463.01
,[11] Reducibility condition of Pochhammer's equation. Master Thesis, Tokyo Univ., 1973 (in Japanese).
,[12] On the group of Fuchsian equations. Seminar Reports of Tokyo Metropolitan University, 1987.
,[13] On a monodromy group and irreducibility conditions of a fourth order Fuchsian differential system of Okubo type, J. Reine Angew. Math., 299/300 (1978), 38-50. | MR 58 #6426 | Zbl 0367.35049
,[14] On a fourth order Fuchsian differential equation of Okubo type, Funk. Ekvac., 34 (1991), 211-221. | MR 93c:34015 | Zbl 0744.34011
, ,[15] A global study of Jordan-Pochhammer differential equations. Funk. Ekvac., 19 (1976), 85-99. | MR 54 #10720 | Zbl 0349.34009
, ,[16] Modern Analysis, Cambridge, 1927.
, ,[17] On the structure of connection coefficients for hypergeometric systems, Hiroshima Math. J., 18 (1988), 309-339. | MR 90c:39009 | Zbl 0669.34014
,[18] On an irreducibility condition for hypergeometric systems, preprint. | Zbl 0834.34013
,