Nous montrons l’existence d’une surface minimale complète dans l’espace , conformément équivalente à une surface de Riemann hyperelliptique compacte de genre trois moins un point; son bout est de type Enneper et sa courbure totale est .
We show that there exists a complete minimal surface immersed into which is conformally equivalent to a compact hyperelliptic Riemann surface of genus three minus one point. The end of the surface is of Enneper type and its total curvature is .
@article{AIF_1994__44_2_525_0,
author = {Do Espirito Santo, Nedir},
title = {Complete minimal surfaces in ${\mathbb {R}}^3$ with type Enneper end},
journal = {Annales de l'Institut Fourier},
volume = {44},
year = {1994},
pages = {525-557},
doi = {10.5802/aif.1408},
mrnumber = {95h:53008},
zbl = {0803.53006},
language = {en},
url = {http://dml.mathdoc.fr/item/AIF_1994__44_2_525_0}
}
Do Espirito Santo, Nedir. Complete minimal surfaces in ${\mathbb {R}}^3$ with type Enneper end. Annales de l'Institut Fourier, Tome 44 (1994) pp. 525-557. doi : 10.5802/aif.1408. http://gdmltest.u-ga.fr/item/AIF_1994__44_2_525_0/
[CG], , Elliptische und Hyperelliptische Funktionen und Vollständige Minimalflächen von Enneperschen Typ, Math. Ann., 259 (1982), 359-369. | MR 661204 | Zbl 0468.53008
[GP], Introduction to Algebraic Curves, Providence, AMS, 1989. | MR 1013999 | Zbl 0696.14012
[H], On subharmonic Functions and Differential Geometry in the Large, Comment Math. Helv., 32 (1957), 13-72. | MR 94452 | MR 20 #970 | Zbl 0080.15001
[JM], , III The Topology of Complete Minimal Surfaces of Finite Total Gaussian Curvature, Topology, 22 (1983), 203-221. | MR 683761 | MR 84d:53006 | Zbl 0517.53008
[K], Construction of Minimal Surfaces, Surveys in Geometry, University of Tokyo 1989, p. 1-96, and Lecture Notes 12, SFB256, Bonn, 1989.
[O], A Survey of Minimal Surfaces, van Nostrand Reinhold Company, 1969. | MR 256278 | MR 41 #934 | Zbl 0209.52901