Si est la variété des courbes planes irréductibles de degré avec exactement nœuds comme singularités, Diaz-Harris (1986) ont conjecturé que est un groupe de torsion. Ici nous étudions l’équivalence rationnelle de certaines familles de courbes planes singulières et cela nous permet, en particulier, de montrer que est un groupe fini, vérifiant ainsi la conjecture pour . Plus précisément, si , alors est un groupe cyclique d’ordre pour impair et le produit de par un groupe cyclique d’ordre pour est pair.
If denotes the variety of irreducible plane curves of degree with exactly nodes as singularities, Diaz and Harris (1986) have conjectured that is a torsion group. In this note we study rational equivalence on some families of singular plane curves and we prove, in particular, that is a finite group, so that the conjecture holds for . Actually the order of is , the group being cyclic if is odd and the product of and a cyclic group of order if is even.
@article{AIF_1994__44_2_323_0, author = {Miret, Josep M. and Descamps, Sebasti\'an Xamb\'o}, title = {Rational equivalence on some families of plane curves}, journal = {Annales de l'Institut Fourier}, volume = {44}, year = {1994}, pages = {323-345}, doi = {10.5802/aif.1400}, mrnumber = {95g:14006}, zbl = {0803.14013}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1994__44_2_323_0} }
Miret, Josep M.; Descamps, Sebastián Xambó. Rational equivalence on some families of plane curves. Annales de l'Institut Fourier, Tome 44 (1994) pp. 323-345. doi : 10.5802/aif.1400. http://gdmltest.u-ga.fr/item/AIF_1994__44_2_323_0/
[1] Geometry of the Severi varieties I, preprint (1986). | Zbl 0677.14003
, ,[2] Geometry of Severi varieties, II : Independence of divisor classes and examples, in : Algebraic Geometry, LN 1311, Springer-Verlag (Proceeding Sundance 1986), edited by Holme-Speiser), 23-50. | MR 89g:14014 | Zbl 0677.14004
, ,[3] Intersection Theory, Ergebnisse 3.Folge, Band 2, Springer-Verlag, 1984. | MR 85k:14004 | Zbl 0541.14005
,[4] On the Severi problem, Inventiones Math., 84 (1986), 445-461. | MR 87f:14012 | Zbl 0596.14017
,[5] Geometry of complete cuspidal cubics, in : Algebraic Curves and Projective Geometry, LN 1389, Springer-Verlag (Proceedings Trento 1988, edited by Ballico and Ciliberto), 1989, 195-234. | MR 90k:14059 | Zbl 0688.14050
, ,[6] On the Geometry of nodal plane cubics : the condition p, in : Enumerative Geometry : Zeuthen Symposium, Contemporary Mathematics 123 (1991), AMS (Proceedings of the Zeuthen Symposium 1989, edited by S. Kleiman and A. Thorup). | Zbl 0766.14041
, ,[7] On nodal plane curves, Inventiones Math., 86 (1986), 529-534. | MR 87j:14039 | Zbl 0644.14009
,[8] Anhang F in : Vorlesungen ber algebraische Geometrie, Teubner, 1921. | JFM 48.0687.01
,