Rational equivalence on some families of plane curves
Miret, Josep M. ; Descamps, Sebastián Xambó
Annales de l'Institut Fourier, Tome 44 (1994), p. 323-345 / Harvested from Numdam

Si V d,δ est la variété des courbes planes irréductibles de degré d avec exactement δ nœuds comme singularités, Diaz-Harris (1986) ont conjecturé que Pic (V d,δ ) est un groupe de torsion. Ici nous étudions l’équivalence rationnelle de certaines familles de courbes planes singulières et cela nous permet, en particulier, de montrer que Pic (V d,1 ) est un groupe fini, vérifiant ainsi la conjecture pour δ=1. Plus précisément, si D=3(d-2)(d 2 -3d+1), alors Pic (V d,1 ) est un groupe cyclique d’ordre 2D pour d impair et le produit de 2 par un groupe cyclique d’ordre D pour d est pair.

If V d,δ denotes the variety of irreducible plane curves of degree d with exactly δ nodes as singularities, Diaz and Harris (1986) have conjectured that Pic (V d,δ ) is a torsion group. In this note we study rational equivalence on some families of singular plane curves and we prove, in particular, that Pic (V d,1 ) is a finite group, so that the conjecture holds for δ=1. Actually the order of Pic (V d,1 ) is 6(d-2)d 2 -3d+1), the group being cyclic if d is odd and the product of 2 and a cyclic group of order 3(d-2)(d 2 -3d+1) if d is even.

@article{AIF_1994__44_2_323_0,
     author = {Miret, Josep M. and Descamps, Sebasti\'an Xamb\'o},
     title = {Rational equivalence on some families of plane curves},
     journal = {Annales de l'Institut Fourier},
     volume = {44},
     year = {1994},
     pages = {323-345},
     doi = {10.5802/aif.1400},
     mrnumber = {95g:14006},
     zbl = {0803.14013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1994__44_2_323_0}
}
Miret, Josep M.; Descamps, Sebastián Xambó. Rational equivalence on some families of plane curves. Annales de l'Institut Fourier, Tome 44 (1994) pp. 323-345. doi : 10.5802/aif.1400. http://gdmltest.u-ga.fr/item/AIF_1994__44_2_323_0/

[1] S. Diaz, J. Harris, Geometry of the Severi varieties I, preprint (1986). | Zbl 0677.14003

[2] S. Diaz, J. Harris, Geometry of Severi varieties, II : Independence of divisor classes and examples, in : Algebraic Geometry, LN 1311, Springer-Verlag (Proceeding Sundance 1986), edited by Holme-Speiser), 23-50. | MR 89g:14014 | Zbl 0677.14004

[3] W. Fulton, Intersection Theory, Ergebnisse 3.Folge, Band 2, Springer-Verlag, 1984. | MR 85k:14004 | Zbl 0541.14005

[4] J. Harris, On the Severi problem, Inventiones Math., 84 (1986), 445-461. | MR 87f:14012 | Zbl 0596.14017

[5] J.M. Miret, S. Xambó, Geometry of complete cuspidal cubics, in : Algebraic Curves and Projective Geometry, LN 1389, Springer-Verlag (Proceedings Trento 1988, edited by Ballico and Ciliberto), 1989, 195-234. | MR 90k:14059 | Zbl 0688.14050

[6] J.M. Miret, S. Xambó, On the Geometry of nodal plane cubics : the condition p, in : Enumerative Geometry : Zeuthen Symposium, Contemporary Mathematics 123 (1991), AMS (Proceedings of the Zeuthen Symposium 1989, edited by S. Kleiman and A. Thorup). | Zbl 0766.14041

[7] Z. Ran, On nodal plane curves, Inventiones Math., 86 (1986), 529-534. | MR 87j:14039 | Zbl 0644.14009

[8] F. Severi, Anhang F in : Vorlesungen ber algebraische Geometrie, Teubner, 1921. | JFM 48.0687.01