Nous montrons que chaque groupe dans une classe des groupes introduits dans [2] et [3] possède la propriété (T) de Kazhdan, et nous calculons la constante exacte de Kazhdan par rapport à l’ensemble naturel de ses générateurs. Ceux-ci sont les premiers groupes infinis pour lesquels on montre la propriété (T) sans faire aucun usage de la théorie des groupes semi-simples et de leurs représentations. Aussi, ces groupes sont les premiers pour lesquels la constante exacte de Kazhdan a été calculée. Ceci donne une réponse aux questions 1 et 2, de [9], p. 133.
We show that each group in a class of finitely generated groups introduced in [2] and [3] has Kazhdan’s property (T), and calculate the exact Kazhdan constant of with respect to its natural set of generators. These are the first infinite groups shown to have property (T) without making essential use of the theory of representations of linear groups, and the first infinite groups with property (T) for which the exact Kazhdan constant has been calculated. These groups therefore provide answers to (in [9]), p. 133, Questions 1 and 2.
@article{AIF_1994__44_1_213_0, author = {Cartwright, Donald I. and M\l otkowski, Wojciech and Steger, Tim}, title = {Property $(T)$ and $\tilde{A}\_2$ groups}, journal = {Annales de l'Institut Fourier}, volume = {44}, year = {1994}, pages = {213-248}, doi = {10.5802/aif.1395}, mrnumber = {95j:20024}, zbl = {0792.43002}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1994__44_1_213_0} }
Cartwright, Donald I.; Młotkowski, Wojciech; Steger, Tim. Property $(T)$ and $\tilde{A}_2$ groups. Annales de l'Institut Fourier, Tome 44 (1994) pp. 213-248. doi : 10.5802/aif.1395. http://gdmltest.u-ga.fr/item/AIF_1994__44_1_213_0/
[1]Kazhdan constants for , J. reine angew. Math., 413 (1991), 36-67. | MR 92c:22013 | Zbl 0704.22009
,[2]Groups acting simply transitively on the vertices of a building of type I, Geom. Ded., 47 (1993), 143-166. | MR 95b:20053 | Zbl 0784.51010
, , , ,[3]Groups acting simply transitively on the vertices of a building of type II : the cases and , Geom. Ded., 47 (1993), 167-223. | MR 95b:20054 | Zbl 0784.51011
, , , ,[4]Harmonic analysis for groups acting on triangle buildings, to appear, J. Aust. Math. Soc. | Zbl 0808.51014
, ,[5]The radial Fourier-Stieltjes algebra of free groups, Operator Algebras and Theory Contemporary Mathematics, 10, Am. Math. Soc., Providence (1982), 33-40. | MR 84j:22006 | Zbl 0488.43007
, ,[6]The irreducibility of restrictions of unitary representations to lattices, J. reine angew. Math., 420 (1991), 85-98. | MR 93e:22019 | Zbl 0760.22014
and ,[7]Harmonic Analysis on Free Groups, Lect. Notes Pure Appl. Math., 87 (1983). | MR 85j:43001 | Zbl 0536.43001
and ,[8]On the spectrum of the sum of generators for a finitely generated group, Israel J. Math., 81 (1993), 65-96. | MR 94j:22007 | Zbl 0791.43008
, and ,[9]La propriété de Kazhdan pour les groupes localment compacts, Astérisque, Soc. Math. France, 175 (1989). | Zbl 0759.22001
and ,[10]Non-Abelian Harmonic Analysis, Applications of , Universitext, Springer-Verlag, New York (1992). | Zbl 0768.43001
, ,[11]Projective Planes, Graduate Texts in Mathematics, 6 (1973). | MR 48 #12278 | Zbl 0267.50018
, ,[12]Spherical functions on symmetric graphs, p. 344-386 in Harmonic Analysis, Lecture Notes in Math. 992, Springer Verlag, Berlin Heidelberg New York (1983). | MR 85c:43009 | Zbl 0535.43005
, ,[13]Graduate Texts in Mathematics 105, Springer Verlag, New York Berlin Tokyo (1985). | Zbl 0583.22001
, ,[14]Spherical functions and spectrum of the Laplacian operators on buildings of rank , to appear, Boll. Un. Mat. Ital. | Zbl 0815.51010
and ,[15]Positive Definite Radial Functions on Free Product of Groups, Bollettino Un. Mat. Ital. (7), 2-B (1988), 53-66. | MR 89g:43005 | Zbl 0658.43004
,[16]Sous-groupes libres dans les groupes d'automorphismes d'arbres, L'Enseignement Mathématique, 37 (1991), 151-174. | MR 92f:20028 | Zbl 0744.20024
and ,[17]Lectures on Buildings, Perspectives in Math., vol. 7., Academic Press, (1989). | MR 90j:20001 | Zbl 0694.51001
,[18]Banach lattices and positive operators, Grundlehren der Math. Wiss., Springer-Verlag, Berlin, (1974). | MR 54 #11023 | Zbl 0296.47023
,[19]Buildings of spherical type and finite -pairs, Lecture Notes in Math., 386 (1974). | MR 57 #9866 | Zbl 0295.20047
,[20]Immeubles de type affine in Buildings and the Geometry of Diagrams, Proc. CIME Como 1984 (L.A. Rosati, ed), Lecture Notes in Math., 1181, Springer-Verlag, Berlin (1986), 159-190. | Zbl 0611.20026
,