On démontre grâce à l’usage de la dynamique symbolique en dimension un que la transition vers le chaos dans un oscillateur non-linéaire de relaxation avec terme de contrainte périodique se produit à travers un “Devil Staircase” dans le diagramme de bifurcation.
We use one-dimensional techniques to characterize the Devil’s staircase route to chaos in a relaxation oscillator of the van der Pol type with periodic forcing term. In particular, by using symbolic dynamics, we give the behaviour for certain range of parameter values of a Cantor set of solutions having a certain rotation set associated to a rational number. Finally, we explain the phenomena observed experimentally in the system by Kennedy, Krieg and Chua (in [10]) related with the appearance of secondary staircases intercalated into the primary staircases which were found by van der Pol and van der Mark (in [17]).
@article{AIF_1994__44_1_109_0, author = {Alsed\`a, Lluis and Falc\'o, Antonio}, title = {Devil's staircase route to chaos in a forced relaxation oscillator}, journal = {Annales de l'Institut Fourier}, volume = {44}, year = {1994}, pages = {109-128}, doi = {10.5802/aif.1391}, mrnumber = {95b:58098}, zbl = {0793.34028}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1994__44_1_109_0} }
Alsedà, Lluis; Falcó, Antonio. Devil's staircase route to chaos in a forced relaxation oscillator. Annales de l'Institut Fourier, Tome 44 (1994) pp. 109-128. doi : 10.5802/aif.1391. http://gdmltest.u-ga.fr/item/AIF_1994__44_1_109_0/
[1]The bifurcations of a piecewise monotone family of circle maps related to the Van der Pol equation, Procedings of European Conference on Iteration Theory, Caldes de Malavella, World Scientific, (1987).
, ,[2]Bifurcations for a circle map associated with the Van der Pol equation, Sur la théorie de l'itération et ses applications, Colloque internationaux du CNRS Toulouse, 332 (1982). | MR 87i:58126 | Zbl 0523.34043
, , ,[3]Combinatorial dynamics and entropy in dimension one, Advanced Series on Nonlinear Dynamics, World Scientific, Singapore, 1993. | MR 95j:58042 | Zbl 0843.58034
, , ,[4]Kneading theory and rotation interval for a class of circle maps of degree one, Nonlinearity, 3 (1990). | MR 91e:58090 | Zbl 0735.54026
, ,[5]On nonlinear differential equations of second order II, Ann. of Math., 48 (1947). | Zbl 0029.12602
, ,[6]Une remarque sur la structure des endomorphismes de degré 1 du cercle, C. R. Acad. Sci., Paris série I, 299 (1984). | MR 86b:58102 | Zbl 0584.58004
, , ,[7]Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. | Zbl 0515.34001
, ,[8]Rotation sets are closed, Math. Proc. Camb. Phil. Soc., 89 (1981). | MR 82i:58061 | Zbl 0484.58027
,[9]Some remarks on Birkhoff and Mather twist theorems Ergod., Theor. Dynam. Sys., 2 (1982). | Zbl 0521.58048
,[10]The Devil's Staircase : The Electrical Engineer's Fractal, IEEE Trans. on Circuits and Systems., 36 (1989), 1133-1139.
, , ,[11]Qualitative analysis of the periodically forced relaxation oscillations, Mem. Amer. Math., Soc., 244 (1981). | MR 82g:58052 | Zbl 0448.34032
,[12]A second order differential equation with singular solutions, Ann. of Math., 50 (1949). | MR 10,710b | Zbl 0045.36501
,[13]Stable and random motions in dynamical systems, Princeton University Press (1973).
,[14]Rotation intervals for a class of maps of the real line into itself, Ergod. Theor. Dynam. Sys., 6 (1986). | MR 87k:58131 | Zbl 0615.54030
,[15]The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, IHES, 1977. | Numdam | Zbl 0445.58022
,[16]On relaxation oscillations, Phil. Mag., 2 (1926). | JFM 52.0450.05
,[17]Frequency demultiplication, Nature, 120 (1927).
, ,