@article{AIF_1993__43_5_1311_0, author = {Baouendi, M. S. and Rothschild, L. P.}, title = {Harmonic functions satisfying weighted sign conditions on the boundary}, journal = {Annales de l'Institut Fourier}, volume = {43}, year = {1993}, pages = {1311-1318}, doi = {10.5802/aif.1375}, mrnumber = {95c:35067}, zbl = {0804.35029}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1993__43_5_1311_0} }
Baouendi, M. S.; Rothschild, L. P. Harmonic functions satisfying weighted sign conditions on the boundary. Annales de l'Institut Fourier, Tome 43 (1993) pp. 1311-1318. doi : 10.5802/aif.1375. http://gdmltest.u-ga.fr/item/AIF_1993__43_5_1311_0/
[1] Boundary behavior of certain holomorphic maps, Michigan Math. J., 38 (1991), 117-128. | MR 92c:32031 | Zbl 0735.32005
,[2] A weak Hopf Lemma for holomorphic mappings, preprint. | Zbl 0840.30018
,[3] Unique continuation and regularity at the boundary for holomorphic functions, Duke J. Math., 61 (1990), 635-653. | MR 92d:32033 | Zbl 0718.32021
, , ,[4] Unique continuation and a Schwarz reflection principle for analytic sets, Comm. P.D.E., 18 (1993), 1961-1970. | MR 94i:32014 | Zbl 0794.32015
and ,[5] A local Hopf lemma and unique continuation for harmonic functions, Duke J. Math., Inter. Research Notices, 71 (1993), 245-251. | MR 94i:31008 | Zbl 0787.31002
and ,[6] A C∞ Schwarz reflection principle in one and several complex variables, J. Diff. Geom., 32 (1990), 889-915. | MR 91k:32017 | Zbl 0716.32002
and ,[7] A unique continuation problem for holomorphic mappings, Comm. P.D.E., 18 (1993), 241-263. | MR 94b:32022 | Zbl 0781.32018
and ,[8] Partial differential equations of elliptic type, Ergeb.Math. Grenzgeb. (n.F.), 2, Springer-Verlag, Berlin, 1970. | MR 44 #1924 | Zbl 0198.14101
,[9] Théorie des distributions, Hermann, Paris, 1966.
,[10] Singular integrals and differentiability properties of functions, Princeton University Press, Princeton NJ, 1970. | MR 44 #7280 | Zbl 0207.13501
,