Considérons une représentation rationnelle d’un tore algébrique sur un espace vectoriel . Soit un ensemble générateur homogène minimal pour l’anneau des invariants . De nouvelles bornes supérieures sont établies pour le nombre . Ces bornes sont exprimées en termes du volume de l’enveloppe convexe des poids de et d’autres données géométriques. De plus on décrit un algorithme pour construire un ensemble partiel (essentiellement unique) dont les éléments sont des monômes et tel que soit intègre sur .
Consider a rational representation of an algebraic torus on a vector space . Suppose that is a homogeneous minimal generating set for the ring of invariants, . New upper bounds are derived for the number . These bounds are expressed in terms of the volume of the convex hull of the weights of and other geometric data. Also an algorithm is described for constructing an (essentially unique) partial set of generators consisting of monomials and such that is integral over .
@article{AIF_1993__43_4_1055_0, author = {Wehlau, David}, title = {Constructive invariant theory for tori}, journal = {Annales de l'Institut Fourier}, volume = {43}, year = {1993}, pages = {1055-1066}, doi = {10.5802/aif.1364}, mrnumber = {95c:14068}, zbl = {0789.14009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1993__43_4_1055_0} }
Wehlau, David. Constructive invariant theory for tori. Annales de l'Institut Fourier, Tome 43 (1993) pp. 1055-1066. doi : 10.5802/aif.1364. http://gdmltest.u-ga.fr/item/AIF_1993__43_4_1055_0/
[B] An Introduction to Convex Polytopes, Springer-Verlag, Berlin-Heidelberg-New York, 1983. | MR 84d:52009 | Zbl 0509.52001
,[EW] On the ampleness of invertible sheaves in complete projective toric varieties, Results in Math., (1991), 275-278. | MR 92b:14028 | Zbl 0739.14031
, ,[Ga] The Theory of Matrices, Vol. 1, Chelsea Publishing Company, New York, 1959. | Zbl 0085.01001
,[Go] Invariantentheorie, Chelsea Publishing Company, New York, 1987.
,[K] Computing Invariants, S. S. Koh (Ed.) Invariant Theory, Lect. Notes Math., 1278, 81-94, Springer-Verlag, Berlin-Heidelberg-New York, 1987. | MR 89h:20057 | Zbl 0633.14007
,[N1] Der endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77 (1916), 89-92. | JFM 45.0198.01
,[N2] Der endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p., Nachr. v. d. Ges. Wiss. zu Göttingen, (1926), 485-491. | JFM 52.0106.01
,[O] Convex Bodies and Algebraic Geometry, Ergeb. Math. und Grenzgeb., Bd. 15, Springer-Verlag, Berlin-Heidelberg-New York, 1988. | Zbl 0628.52002
,[P] Constructive Invariant Theory, Astérisque, 87/88 (1981), 303-334. | MR 83i:14040 | Zbl 0491.14004
,[R] Maximal Determinants in Combinatorial Investigations, Can. Jour. Math., 8 (1956), 245-249. | MR 18,105a | Zbl 0071.35903
,[S] Finite Groups and Invariant Theory, M.-P. Malliavin (Ed.) Topics in Invariant Theory (Lect. Notes Math. 1478), 35-66, Springer-Verlag, Berlin-Heidelberg-New York, 1991. | MR 94c:13002 | Zbl 0770.20004
,[St] Combinatorics and Commutative Algebra, Progress in Mathematics, 41, Birkhäuser, Boston-Basel-Stuttgart, 1983. | MR 85b:05002 | Zbl 0537.13009
,[W] The Popov Conjecture for Tori, Proc. Amer. Math. Soc., 114 (1992), 839-845. | MR 92f:14049 | Zbl 0754.20013
,