Nous montrons qu’une variété riemannienne de dimension , à courbure de Ricci et à courbure sectionnelle majorée, est une sphère dès que la première valeur propre de son laplacien (resp. son diamètre) est suffisamment proche de (resp. de ).
We prove that a Riemannian -manifold with Ricci curvature and sectional curvature bounded from above, is a sphere provided the first eigenvalue of its Laplacian (resp. its diameter) is sufficiently close to (resp. to ).
@article{AIF_1993__43_3_843_0, author = {Ilias, Sa\"\i d}, title = {Un nouveau r\'esultat de pincement de la premi\`ere valeur propre du laplacien et conjecture du diam\`etre pinc\'e}, journal = {Annales de l'Institut Fourier}, volume = {43}, year = {1993}, pages = {843-863}, doi = {10.5802/aif.1358}, mrnumber = {94m:58224}, zbl = {0783.53024}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1993__43_3_843_0} }
Ilias, Saïd. Un nouveau résultat de pincement de la première valeur propre du laplacien et conjecture du diamètre pincé. Annales de l'Institut Fourier, Tome 43 (1993) pp. 843-863. doi : 10.5802/aif.1358. http://gdmltest.u-ga.fr/item/AIF_1993__43_3_843_0/
[1] Metrics of positive Ricci curvature with large diameter, Manuscripta Math., 68 (1990), 405-415. | MR 1068264 | MR 91g:53045 | Zbl 0711.53036
,[2] Sur une inégalité isopérimétrique qui généralise celle de Paul Lévy-Gromov, Invent. Math., 80 (1985), 295-308. | MR 788412 | MR 86j:58017 | Zbl 0571.53027
, , ,[3] Some decompositions of the space of symmetric tensors on a riemannian manifold, J. Diff. Geom., 3 (1969), 379-392. | MR 266084 | MR 42 #993 | Zbl 0194.53103
, ,[4] Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 10, Springer-Verlag (1987). | Zbl 0613.53001
,[5] Eigenvalues in Riemannian geometry, Academic Press, Orlando (F1), 1984. | MR 768584 | Zbl 0551.53001
,[6] Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975. | MR 458335 | MR 56 #16538 | Zbl 0309.53035
, ,[7] Eigenvalue comparison theorems and its geometric applications, Math. Z., 143 (1975), 289-297. | MR 378001 | MR 51 #14170 | Zbl 0329.53035
,[8] An eigenvalue pinching theorem, Invent. Math., 68 (1982), 253-256. | MR 666162 | MR 84a:58084 | Zbl 0505.53018
,[9] Diameter, volume and topology for positive Ricci Curvature, J. Diff. Geom., 33 (1991), 743-747. | MR 1100210 | MR 92b:53054 | Zbl 0724.53026
,[10] Un théorème de pincement et une estimation sur la première valeur propre du laplacien, C.R. Acad. Sci. Paris, t. 289, (1979), 441-444. | MR 80j:53045 | Zbl 0429.53028
,[11] Variétés dont le spectre ressemble à celui de la sphère, Astérisque, 80 (1980), 33-52. | MR 82k:58092 | Zbl 0471.53027
,[12] Isoperimetric inequalities based on integral norms of Ricci curvature, Astérisque, 157-158, Colloque P. Lévy sur les processus stochastiques, S.M.F. Editeur, (1988), 191-216. | MR 90a:58179 | Zbl 0665.53041
,[13] A generalized sphere theorem, Ann. Math., 106 (1977), 201-211. | MR 58 #18268 | Zbl 0341.53029
, ,[14] Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes, Ann. Inst. Fourier, 33-2 (1983), 151-165. | Numdam | MR 85b:58127 | Zbl 0528.53040
,[15] Quelques résultats d'isolement pur les applications harmoniques, Prépublication n° 46/92, Laboratoire de Math. et Applications, Université de Tours.
,[16] Pinching theorem for the first eigenvalue on positively curved four manifolds, Invent. Math., 66 (1982), 35-38. | MR 83i:53063 | Zbl 0496.53032
, ,[17] Pinching theorem for the first eigenvalue on positively curved manifolds, Invent. Math., 65 (1981), 221-225. | MR 83e:53044 | Zbl 0496.53031
, ,[18] Géométrie des groupes de transformation. Dunod, Paris, 1958. | MR 23 #A1329 | Zbl 0096.16001
,[19] Certain conditions for a riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14 (1962), 333-340. | MR 25 #5479 | Zbl 0115.39302
,[20] On manifolds of positive Ricci curvature with large diameter, Math. Z., 206 (1991), 255-264. | MR 91m:53033 | Zbl 0697.53042
,[21] A topological version of Obata's sphere theorem, J. Diff. Geom., 14 (1979), 369-376. | MR 82g:58091 | Zbl 0461.53025
,[22] Examples of manifolds of positive Ricci curvature, J. Diff. Geom., 29 (1989) 95-103. | MR 90c:53110 | Zbl 0633.53064
, ,[23] Positive Ricci curvature on the connected sums of Sn × Sm, preprint (1990).
, ,[24] Harmonic mappings of spheres, Amer. J. Math., 97 (1975), 364-385. | MR 52 #11949 | Zbl 0321.57020
,[25] Riemannian spaces having their curvature bounded below by a positive number, Amer. Math. Soc. Transl., 37 (1964), 291-336. | Zbl 0136.42904
,[26] A diameter pinching sphere theorem for positive Ricci curvature, Proc. Amer. Math. Soc., vol. 107, n° 3 (1989), 797-802. | MR 90h:53045 | Zbl 0676.53045
,