The topology of Stein CR manifolds and the Lefschetz theorem
Hill, C. Denson ; Nacinovich, Mauro
Annales de l'Institut Fourier, Tome 43 (1993), p. 459-468 / Harvested from Numdam

On donne des conditions topologiques nécessaires pour l’immersion d’une variété CR dans un espace de Stein ou dans un espace projectif complexe

Necessary topological conditions are given for the closed CR embedding of a CR manifold into a Stein manifold or into a complex projective space.

@article{AIF_1993__43_2_459_0,
     author = {Hill, C. Denson and Nacinovich, Mauro},
     title = {The topology of Stein CR manifolds and the Lefschetz theorem},
     journal = {Annales de l'Institut Fourier},
     volume = {43},
     year = {1993},
     pages = {459-468},
     doi = {10.5802/aif.1340},
     mrnumber = {94d:32012},
     zbl = {0782.32015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1993__43_2_459_0}
}
Hill, C. Denson; Nacinovich, Mauro. The topology of Stein CR manifolds and the Lefschetz theorem. Annales de l'Institut Fourier, Tome 43 (1993) pp. 459-468. doi : 10.5802/aif.1340. http://gdmltest.u-ga.fr/item/AIF_1993__43_2_459_0/

[1] A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. Math., 69 (1959), 713-717. | MR 31 #1685 | Zbl 0115.38405

[2] C.D. Hill and M. Nacinovich, A necessary condition for global Stein immersion of compact CR manifolds, to appear in Riv. Mat. Parma. | Zbl 0787.32020

[3] L. Hörmander, An Introduction to Complex Analysis in Several Complex Variables, Van Nostrand, Princeton, 1966. | Zbl 0138.06203

[4] J. Milnor, Morse Theory, Ann. Math. Studies, Princeton, 51 (1963). | Zbl 0108.10401