Dans ce travail on résoud l’équation de Cauchy-Riemann avec des estimées höldériennes dans une intersection de domaines -convexes. Plus précisément si est défini par des inégalités , où les hypersurfaces réelles sont transverses et les combinaisons linéaires non nulles à coefficients positifs des formes de Levi des ont toutes au moins valeurs propres strictement positives, on résoud, en utilisant des formules intégrales, l’équation , où est une -forme différentielle continue, -fermée dans , avec les estimées suivantes : si désigne la distance au bord de , et si est bornée alors pour tout , est höldérienne d’ordre si et est bornée si .
We study the -equation with Hölder estimates in -convex wedges of by means of integral formulas. If is defined by some inequalities , where the real hypersurfaces are transversal and any nonzero linear combination with nonnegative coefficients of the Levi form of the ’s have at least positive eigenvalues, we solve the equation for each continuous -closed form in , , with the following estimates: if denotes the distance to the boundary of and if is bounded, then for all , is Hölder continuous with exponent if and is bounded if .
@article{AIF_1993__43_2_383_0, author = {Laurent-Thi\'ebaut, Christine and Leiterer, Jurgen}, title = {Uniform estimates for the Cauchy-Riemann equation on $q$-convex wedges}, journal = {Annales de l'Institut Fourier}, volume = {43}, year = {1993}, pages = {383-436}, doi = {10.5802/aif.1338}, mrnumber = {95a:32025}, zbl = {0782.32014}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1993__43_2_383_0} }
Laurent-Thiébaut, Christine; Leiterer, Jurgen. Uniform estimates for the Cauchy-Riemann equation on $q$-convex wedges. Annales de l'Institut Fourier, Tome 43 (1993) pp. 383-436. doi : 10.5802/aif.1338. http://gdmltest.u-ga.fr/item/AIF_1993__43_2_383_0/
[AiHe] Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Usp. Mat. Nauk, 39 (1984), 39-106, [Engl. trans. Russ. Math. Surv., 39 (1984), 41-118 and : Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions II, Matem. Sbornik, 127 (169) (1985), 1, [Engl. trans. Math. USSR Sbornik, 55 (1986), 1, 91-111]. | Zbl 0593.32015
, ,[AnG] Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. | Numdam | MR 27 #343 | Zbl 0106.05501
, ,[AnHi1] E. E. Levi convexity and the Hans Lewy problem. Part I : Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa, 26 (1972), 325-363. | Numdam | MR 57 #718 | Zbl 0256.32007
, ,[AnHi2] E. E. Levi convexity and the Hans Lewy problem. Part II : Vanishing theorems, Ann. Scuola Norm. Sup. Pisa, 26 (1972), 747-806. | Numdam | MR 57 #16693 | Zbl 0283.32013
, ,[BFi] The Cauchy-Riemann equation in spaces with uniform weights, Math. Nachr., 156 (1992), 45-55. | MR 94h:32026 | Zbl 0793.32007
,[FiLi] Lokale Kerne und beschränkte Lösungen für den ∂-Operator auf q-konvexen Gebieten, Math. Ann., 208 (1974) 249-265. | MR 49 #7477 | Zbl 0277.35045
, ,[He1] The Lewy equation and analysis on pseudoconvex manifolds (russ.), Usp. Mat. Nauk, 32 (1977), 57-118, [Engl. trans. Russ. Math. Surv., 32 (1977), 59-130]. | MR 56 #12318 | Zbl 0382.35038
,[He2] Solution des équations de Cauchy-Riemann tangentielles sur des variétés de Cauchy-Riemann q-convexes, C. R. Acad. Sci. Paris, Sér. I Math, 292 (1981), 27-30. | MR 82b:32031 | Zbl 0472.32014
,[He3] Analytic representation for CR-functions on submanifolds of codimension 2 in ℂn, Lecture Notes in Math. Springer, 798 (1980), 169-191. | MR 81k:32006 | Zbl 0431.32007
,[He4] The method of integral representations in complex analysis (russ.). In : Sovremennge problemy matematiki, Fundamentalnye napravlenija, Moscow Viniti, 7 (1985), 23-124, [Engl. trans. in : Encyclopedia of Math. Sci., Several complex variables I, Springer-Verlag, 7 (1990), 19-116]. | Zbl 0781.32007
,[HeLe1] Theory of functions on complex manifolds, Akademie-Verlag Berlin and Birkhäuser-Verlag Boston, 1984. | Zbl 0726.32001
, ,[HeLe2] Andreotti-Grauert theory by integral formulas, Akademie-Verlag Berlin and Birkhäuser-Verlag Boston (Progress in Math. 74) (1988). | MR 90h:32002b | Zbl 0654.32002
, ,[LiR] Estimates for a class of integral operators and applications to the ∂-Neumann problem, Invent. Math., 85 (1986), 415-438. | MR 88j:32022b | Zbl 0569.32008
, ,[M] Randregularität des ∂-Problems für stückweise streng pseudokonvexe Gebeite in ℂn, Math. Ann., 280 (1988) 46-68. | MR 89f:32033 | Zbl 0617.32032
,[N1] On strict Levi q-convexity and q-concavity on domains with piecewise smooth boundaries, Math. Ann., 281 (1988), 459-482. | MR 90b:32033 | Zbl 0628.32021
,[N2] On a theorem of Airapetjan and Henkin, Seminari di Geometria 1988-1991, Univ. Bologna (1991), 99-135. | Zbl 0747.32011
,[RS] Uniform estimates for the ∂-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann., 206 (1973), 325-354. | MR 49 #3214 | Zbl 0248.32015
, ,[T] Homotopy formulas in the tangential Cauchy-Riemann complex, Mem. Ann. Math. Soc, 434 (1990). | MR 90m:32012 | Zbl 0707.35105
,