On démontre que 7. 398 537 est une mesure d’irrationalité de . On utilise des intégrales doubles de fonctions rationnelles stables par un groupe de transformations birationnelles de . Les résultats numériques sont obtenus à l’aide d’une méthode de programmation linéaire semi-infinie.
We prove that 7. 398 537 is an irrationality measure of . We employ double integrals of suitable rational functions invariant under a group of birational transformations of . The numerical results are obtained with the aid of a semi-infinite linear programming method.
@article{AIF_1993__43_1_85_0, author = {Rhin, Georges and Viola, Carlo}, title = {On the irrationality measure of $\zeta (2)$}, journal = {Annales de l'Institut Fourier}, volume = {43}, year = {1993}, pages = {85-109}, doi = {10.5802/aif.1322}, mrnumber = {94b:11065}, zbl = {0776.11036}, mrnumber = {1209696}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1993__43_1_85_0} }
Rhin, Georges; Viola, Carlo. On the irrationality measure of $\zeta (2)$. Annales de l'Institut Fourier, Tome 43 (1993) pp. 85-109. doi : 10.5802/aif.1322. http://gdmltest.u-ga.fr/item/AIF_1993__43_1_85_0/
[1] Legendre polynomials and irrationality, J. reine angew. Math., 318 (1980), 137-155. | MR 81i:10036 | Zbl 0425.10039
and ,[2] Linear Programming in infinite-dimensional spaces, Wiley-Interscience, 1987. | MR 88f:90180 | Zbl 0632.90038
and ,[3] Irrationalité de &ζ(2) et &ζ(3), Astérisque, 61 (1979), 11-13. | Zbl 0401.10049
,[4] A note on the irrationality of &ζ(2) and &ζ(3), Bull. London Math. Soc., 11 (1979), 268-272. | MR 81j:10045 | Zbl 0421.10023
,[5] Padé and rational approximations to systems of functions and their arithmetic applications, Lect. Notes in Math., 1052 (1984), 37-84. | MR 86a:11029 | Zbl 0536.10028
and ,[6] Transcendental methods and Theta-functions, Proc. Symp. Pure Math., 49 (1989), part 2, 167-232. | MR 91e:11080 | Zbl 0679.10026
and ,[7] Hermite-Padé approximations to exponential functions and elementary estimates of the measure of irrationality of π, Lect. Notes in Math., 925 (1982), 299-322. | MR 83m:10051 | Zbl 0518.41014
,[8] Some remarks on Beukers' integrals, Colloquia Math. Soc. János Bolyai, 51 (1987), 637-657. | MR 91f:11050 | Zbl 0755.11019
and ,[9] Legendre type polynomials and irrationality measures, J. reine angew. Math., 407 (1990), 99-125. | MR 91i:11081 | Zbl 0692.10034
,[10] On the approximation of π, Proc. K. Ned. Akad. Wet. Amsterdam, A 56 (1953), 30-42. | MR 14,957a | Zbl 0053.36105
,[11] Approximations rationnelles de π et quelques autres nombres, Bull. Soc. Math. France, Mémoire 37 (1974), 121-132. | Numdam | MR 51 #375 | Zbl 0286.10017
,[12] A simplex method for function minimization, Computer J., 7 (1965), 308-313. | Zbl 0229.65053
and ,[13] Numerical Recipes. The art of scientific computing, Cambridge University Press, 1986. | Zbl 0587.65003
, , , ,[14] Approximants de Padé et mesures effectives d'irrationalité, Progr. in Math., 71 (1987), 155-164. | MR 90k:11089 | Zbl 0632.10034
,[15] A lower bound for the approximation of ln 2 by rational numbers (Russian), Vestnik Moskov Univ., Ser 1 Math. Mekh., 6 (1987), 25-29. | MR 89b:11064 | Zbl 0635.10025
,