On the irrationality measure of ζ(2)
Rhin, Georges ; Viola, Carlo
Annales de l'Institut Fourier, Tome 43 (1993), p. 85-109 / Harvested from Numdam

On démontre que 7. 398 537 est une mesure d’irrationalité de ζ(2)=π 2 /6. On utilise des intégrales doubles de fonctions rationnelles stables par un groupe de transformations birationnelles de 2 . Les résultats numériques sont obtenus à l’aide d’une méthode de programmation linéaire semi-infinie.

We prove that 7. 398 537 is an irrationality measure of ζ(2)=π 2 /6. We employ double integrals of suitable rational functions invariant under a group of birational transformations of 2 . The numerical results are obtained with the aid of a semi-infinite linear programming method.

@article{AIF_1993__43_1_85_0,
     author = {Rhin, Georges and Viola, Carlo},
     title = {On the irrationality measure of $\zeta (2)$},
     journal = {Annales de l'Institut Fourier},
     volume = {43},
     year = {1993},
     pages = {85-109},
     doi = {10.5802/aif.1322},
     mrnumber = {94b:11065},
     zbl = {0776.11036},
     mrnumber = {1209696},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1993__43_1_85_0}
}
Rhin, Georges; Viola, Carlo. On the irrationality measure of $\zeta (2)$. Annales de l'Institut Fourier, Tome 43 (1993) pp. 85-109. doi : 10.5802/aif.1322. http://gdmltest.u-ga.fr/item/AIF_1993__43_1_85_0/

[1] K. Alladi and M.L. Robinson, Legendre polynomials and irrationality, J. reine angew. Math., 318 (1980), 137-155. | MR 81i:10036 | Zbl 0425.10039

[2] E.J. Anderson and P. Nash, Linear Programming in infinite-dimensional spaces, Wiley-Interscience, 1987. | MR 88f:90180 | Zbl 0632.90038

[3] R. Apéry, Irrationalité de &ζ(2) et &ζ(3), Astérisque, 61 (1979), 11-13. | Zbl 0401.10049

[4] F. Beukers, A note on the irrationality of &ζ(2) and &ζ(3), Bull. London Math. Soc., 11 (1979), 268-272. | MR 81j:10045 | Zbl 0421.10023

[5] D. V. Chudnovsky and G. V. Chudnovsky, Padé and rational approximations to systems of functions and their arithmetic applications, Lect. Notes in Math., 1052 (1984), 37-84. | MR 86a:11029 | Zbl 0536.10028

[6] D. V. Chudnovsky and G. V. Chudnovsky, Transcendental methods and Theta-functions, Proc. Symp. Pure Math., 49 (1989), part 2, 167-232. | MR 91e:11080 | Zbl 0679.10026

[7] G. V. Chudnovsky, Hermite-Padé approximations to exponential functions and elementary estimates of the measure of irrationality of π, Lect. Notes in Math., 925 (1982), 299-322. | MR 83m:10051 | Zbl 0518.41014

[8] R. Dvornicich and C. Viola, Some remarks on Beukers' integrals, Colloquia Math. Soc. János Bolyai, 51 (1987), 637-657. | MR 91f:11050 | Zbl 0755.11019

[9] M. Hata, Legendre type polynomials and irrationality measures, J. reine angew. Math., 407 (1990), 99-125. | MR 91i:11081 | Zbl 0692.10034

[10] K. Mahler, On the approximation of π, Proc. K. Ned. Akad. Wet. Amsterdam, A 56 (1953), 30-42. | MR 14,957a | Zbl 0053.36105

[11] M. Mignotte, Approximations rationnelles de π et quelques autres nombres, Bull. Soc. Math. France, Mémoire 37 (1974), 121-132. | Numdam | MR 51 #375 | Zbl 0286.10017

[12] J.A. Nelder and R. Mead, A simplex method for function minimization, Computer J., 7 (1965), 308-313. | Zbl 0229.65053

[13] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. The art of scientific computing, Cambridge University Press, 1986. | Zbl 0587.65003

[14] G. Rhin, Approximants de Padé et mesures effectives d'irrationalité, Progr. in Math., 71 (1987), 155-164. | MR 90k:11089 | Zbl 0632.10034

[15] E.A. Rukhadze, A lower bound for the approximation of ln 2 by rational numbers (Russian), Vestnik Moskov Univ., Ser 1 Math. Mekh., 6 (1987), 25-29. | MR 89b:11064 | Zbl 0635.10025