Énumération complète des classes de formes parfaites en dimension 7
Jaquet-Chiffelle, David-Olivier
Annales de l'Institut Fourier, Tome 43 (1993), p. 21-55 / Harvested from Numdam

Le lecteur trouvera ici une description détaillée des méthodes et algorithmes utilisés pour démontrer qu’il n’y a que 33 classes de formes parfaites en dimension 7, ainsi qu’un tableau récapitulatif des résultats.

Il trouvera, en particulier, une généralisation de l’algorithme de Voronoï appliquée en profondeur, récursivement, aux faces des domaines

The reader will find here a detailed description of the methods and algorithms used in order to prove that there are only 33 classes of perfect septenary forms, as well as a recapitulative table of the results.

He will find in particular a generalization of Voronoï’s algorithm applied in depth, recursively, to the faces of the domains.

@article{AIF_1993__43_1_21_0,
     author = {Jaquet-Chiffelle, David-Olivier},
     title = {\'Enum\'eration compl\`ete des classes de formes parfaites en dimension 7},
     journal = {Annales de l'Institut Fourier},
     volume = {43},
     year = {1993},
     pages = {21-55},
     doi = {10.5802/aif.1320},
     mrnumber = {94d:11048},
     zbl = {0769.11028},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_1993__43_1_21_0}
}
Jaquet-Chiffelle, David-Olivier. Énumération complète des classes de formes parfaites en dimension 7. Annales de l'Institut Fourier, Tome 43 (1993) pp. 21-55. doi : 10.5802/aif.1320. http://gdmltest.u-ga.fr/item/AIF_1993__43_1_21_0/

[Ba1]E.S. Barnes, Note on extreme forms, Can. J. Math., 7 (1955), 150-154. | MR 16,1002e | Zbl 0065.03003

[Ba2]E.S. Barnes, The perfect and extreme senary forms, Can. J. Math., 9 (1957), 235-242. | MR 19,251e | Zbl 0078.03704

[Ba3]E.S. Barnes, The complete enumeration of extreme senary forms, Phil. Trans. R. Soc. Lond., A, 249 (1957), 461-506. | MR 19,251d | Zbl 0077.26601

[Ba4]E.S. Barnes, On a theorem of Voronoï, Proc. Camb. Phil. Soc., 53 (1957), 537-539. | MR 19,120g | Zbl 0078.03703

[Ba5]E.S. Barnes, Criteria for extreme forms, J. Aust. Math. Soc., 1 (1959), 17-20. | MR 21 #5622 | Zbl 0109.03303

[BM1]A.-M. Bergé & J. Martinet, Sur la constante d'Hermite (étude historique), Sém. de Th. des Nombres de Bordeaux 2, Exposé 8, pp. 8-01-8-15 (1985-1986). | MR 89g:11032 | Zbl 0623.10020

[BM2]A.-M. Bergé & J. Martinet, Sur un problème de dualité lié aux sphères en géométrie des nombres, J. of Number Theory, Vol. 32, No. 1 (1989), 14-42. | MR 90g:11088 | Zbl 0677.10022

[Be1]M. Berger, Géométrie 3 / convexes et polytopes, polyèdres réguliers, aires et volumes. Cedic, Fernand Nathan (publié avec le concours du C.N.R.S.) (1978). | Zbl 0423.51001

[Bl1]H.F. Blichfeldt, On the minimum value of positive real quadratic forms in 6 variables, Bull. Am. Math. Soc., 31, 386 (1925). | JFM 51.0157.01

[Bl2]H.F. Blichfeldt, The minimum value of quadratic forms, and the closest packing of spheres, Math. Annalen, 101 (1929), 605-608. | JFM 55.0721.01

[Bl3]H.F. Blichfeldt, The minimum values of quadratic forms in six, seven and eight variables, Math. Z., 39 (1935), 1-15. | JFM 60.0924.04 | Zbl 0009.24403

[CS1]J.H. Conway & N.J.A. Sloane, Sphere-packings, lattices and groups. Grundlehren der mathematischen Wissenschaften 290, Springer-Verlag, 1988. | Zbl 0634.52002

[CS2]J.H. Conway & N.J.A. Sloane, Low-dimensional lattices. III. Perfect forms, Proc. R. Soc. Lond., A, 418 (1988), 43-80. | MR 90a:11073 | Zbl 0655.10022

[Co1]H.S.M. Coxeter, Extreme forms, Can. J. Math., 3 (1851), 391-441. | Zbl 0044.04201

[GS1]L. Guy & J.R. Steele, Common LISP : The Language. Digital Press, 1984, 465 pages.

[JS1]D.-O. Jaquet & F. Sigrist, Formes quadratiques contiguës à D7, C. R. Acad. Sci. Paris, t. 309, Série I (1989), 641-644. | MR 91h:11054 | Zbl 0693.10025

[Ja1]D.-O. Jaquet, Domaines de Voronoï et algorithme de réduction des formes quadratiques définies positives. Sém. de Th. des Nombres de Bordeaux 2 (1990), 163-215. | Numdam | MR 91e:11072 | Zbl 0715.11031

[Ja2]D.-O. Jaquet, Classification des réseaux dans R7 (via la notion de formes parfaites), Astérisque, Soc. Math. de France, 198-199-200 (1991), 177-185. | MR 93g:11071 | Zbl 0748.11032

[Kn1]M. Kneser, Two remarks on extreme forms, Can. J. Math., 7 (1955), 145-149. | MR 16,1002d | Zbl 0065.03101

[KZ1]A. Korkine & G. Zolotareff, Sur les formes quadratiques, Math. Annalen, 6 (1873), 336-389.

[KZ2]A. Korkine & G. Zolotareff, Sur les formes quadratiques positives, Math. Annalen, 11 (1877), 242-292. | JFM 09.0139.01

[La1]J. Larmouth, The enumeration of perfect forms. Dans &”Computers in number theory&” (A. O. L. Atkin & B. J. Birch editors), pp. 237-239, New York, Academic Press 1971. | Zbl 0217.03201

[Mo1]L.J. Mordell, Observation on the minimum of a positive quadratic form in eight variables, J. Lond. Math. Soc., 19 (1944), 3-6. | MR 6,57e | Zbl 0060.12009

[Oe1]J. Oesterlé, Empilements de sphères. Sém. N. Bourbaki 42, Exposé 727, Vol. 1989-90 (1990). | Numdam | MR 92g:11067 | Zbl 0731.52005

[Sc1]P.R. Scott, On perfect and extreme forms. Thesis, Department of Mathematics, Univ. of Adelaide (1963).

[Sc2]P.R. Scott, On perfect and extreme forms, J. Aust. Math. Soc., 4 (1964), 56-77. | MR 28 #5039 | Zbl 0119.04501

[Sc3]P.R. Scott, The construction of perfect and extreme forms, Can. J. Math., Vol. 18 (1966), 147-158. | MR 32 #4091 | Zbl 0136.03102

[Se1]J.-P. Serre, Cours d'arithmétique. 2e édition, Presses Univ. de France, Paris, 1977. | MR 58 #16473 | Zbl 0376.12001

[Si1]F. Sigrist, Formes quadratiques encapsulées. Sém. de Th. des Nombres de Bordeaux, 2 (1990), 425-429. | Numdam | MR 91m:11025 | Zbl 0722.11032

[Su1]S.Sh. Sushbaev, Voronoï neighborhood of perfect form Ø15 (x1, x2, ..., x7), Vop. Vychisl. Prikl. Mat., 77 (1985), 48-56. | Zbl 0578.10036

[St1]K.C. Stacey, The enumeration of perfect quadratic forms in seven variables, Ph. D. Dissertation, University of Oxford, 1973.

[St2]K.C. Stacey, The enumeration of perfect septenary forms, J. Lond. Math. Soc. (2) 10 (1975), 97-104. | MR 51 #5507 | Zbl 0297.10012

[St3]K.C. Stacey, The perfect septenary forms with Δ4 = 2, J. Aust. Math. Soc., (A) 22 (1976), 144-164. | MR 55 #7929 | Zbl 0332.10014

[Sti1] E. Stiemke, Über positive Lösungen homogener linearer Gleichungen, Math. Annalen, 76 (1915), 340-342. | JFM 45.0168.04

[Ve1]N.M. Vetchinkin, Uniqueness of the classes of positive quadratic forms on which the values of Hermite constants are attained for 6 ≤ n ≤ 8, Trudy Mat. Inst. Imeni V. A. Steklova, 152 (1980), 34-86. (traduction anglaise dans Proc. Steklov Inst. Math. (3) (1982), 37-95. | Zbl 0501.10031

[Vo1]G. Voronoï, Sur quelques propriétés des formes quadratiques positives parfaites, J. reine angew. Math., 133 (1908), 97-178. | JFM 38.0261.01

[Wa1]G.L. Watson, On the minimum of a positive quadratic form in n(≤ 8) variables (verification of Blichfeldt's calculation), Proc. Camb. Phil. Soc., 62 (1966), 719. | MR 33 #5571 | Zbl 0178.37801

[Wa2]G.L. Watson, On the minimal points of perfect septenary forms, Mathematika, 16 (1969), 170-177. | MR 41 #1645 | Zbl 0185.11101

[Wa3] G.L. Watson, Integral quadratic forms, Cambridge, University Press, 1970.

[Wa4] G.L. Watson, On the minimal points of a positive quadratic form, Mathematika, 18 (1971), 60-70. | MR 44 #6612 | Zbl 0219.10032

[Wa5]G.L. Watson, The number of minimum points of a positive quadratic form, Dissertationes Math., 84 (1971), 1-46. | MR 47 #6610 | Zbl 0215.34901

[Wa6]G.L. Watson, The number of minimum points of a positive quadratic form having no perfect binary section with the same minimum, Proc. Lond. Math. Soc. (3) 24 (1972), 625-646. | MR 46 #7166 | Zbl 0233.10012