Résurgence de Voros et périodes des courbes hyperelliptiques
Dillinger, H. ; Delabaere, E. ; Pham, Frédéric
Annales de l'Institut Fourier, Tome 43 (1993), p. 163-199 / Harvested from Numdam

Le but de cet article est de formuler de façon géométrique l’idée maîtresse de Voros [dans Ann. Inst. Henri Poincaré, Sect. A 39, 211-238 (1983)] : les solutions de l’équation de Schrödinger stationnaire à une dimension, à potentiel polynomial, sont codées exactement dans le domaine complexe par leurs développements BKW (développements formels, divergents, en puissances de la constante de Planck), d’une façon entièrement lisible dans la géométrie des périodes de la forme pdq (q=variable de position, p = impulsion classique).

The aim of this article is to formulate in a geometrical way the master idea of Voros [in Ann. Inst. Henri Poincaré, Sect. A 39, 211-238 (1983)] : the solutions of the one dimensional stationary Schrödinger equation with a polynomial potential are exactly encoded in the complex domain by their WKB expansions (formal divergent expansions in powers of Planck’s constant) in a way which can be read in the geometry of periods of the differential form pdq (q= position variable, (p=classicial momentum).

@article{AIF_1993__43_1_163_0,
     author = {Dillinger, H. and Delabaere, E. and Pham, Fr\'ed\'eric},
     title = {R\'esurgence de Voros et p\'eriodes des courbes hyperelliptiques},
     journal = {Annales de l'Institut Fourier},
     volume = {43},
     year = {1993},
     pages = {163-199},
     doi = {10.5802/aif.1326},
     mrnumber = {94i:34115},
     zbl = {0766.34032},
     mrnumber = {1209700},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_1993__43_1_163_0}
}
Dillinger, H.; Delabaere, E.; Pham, Frédéric. Résurgence de Voros et périodes des courbes hyperelliptiques. Annales de l'Institut Fourier, Tome 43 (1993) pp. 163-199. doi : 10.5802/aif.1326. http://gdmltest.u-ga.fr/item/AIF_1993__43_1_163_0/

[AVG] V. Arnold, A. Varchenko, S. Goussein-Zade, Singularités des applications différentiables, t.2, Éd. MIR Moscou (traduction française), 1986.

[BB] R. Balian, C. Bloch, Solution of the Schrödinger equation in terms of classical paths, Ann. Phys., 85 (1974), 514-545. | MR 55 #11840 | Zbl 0281.35029

[BO] C.M. Bender, St. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Mc Graw-Hill Book Inc. Company, 1978. | Zbl 0417.34001

[CNP] B. Candelpergher, C. Nosmas, F. Pham, Approche de la résurgence (Actualités Mathématiques, Hermann, à paraître).

[CNP0] B. Candelpergher, C. Nosmas, F. Pham, Premiers pas en calcul étranger, Ann. Inst. Fourier, 43, 1 (1993). | Numdam | MR 94f:34104 | Zbl 0785.30017

[D] R.B. Dingle, Asymptotic Expansions : Their Derivation and Interpretation, Academic Press, London and New-York, 1973. | MR 58 #17673 | Zbl 0279.41030

[DDP] E. Delabaere, H. Dillinger, F. Pham, Exact semi-classical expansions for a one dimensional oscillator (en préparation) ; voir aussi E. Delabaere et H. Dillinger, Thèse de Doctorat, Université de Nice-Sophia-Antipolis, 1991.

[DDP0] E. Delabaere, H. Dillinger, F. Pham, Développements semi-classiques exacts des niveaux d'énergie d'un oscillateur à une dimension, C.R. Acad. Sci. Paris, t. 310, Série I, (1990), 141-146. | MR 91f:81036 | Zbl 0712.35071

[E] J. Écalle, Singularités irrégulières et résurgence multiple, dans cinq applications des fonctions résurgentes, preprint 84, t. 62, Orsay.

[E0] J. Écalle, Les fonctions résurgentes, Publ. Math. Université de Paris-Sud, en plusieurs tomes. | Zbl 0499.30034

[Ji] A.O. Jidoumou, Modèles de résurgence paramétrique, Fonctions d'Airy et cylindro-paraboliques, Thèse de Doctorat, 1990, Université de Nice-Sophia-Antipolis, à paraître dans J. Maths Pures Appl. | Zbl 0867.34046

[L] J. Leray, Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy III), Bull. Soc. Math. France, 87 (1959), 81-180. | Numdam | MR 23 #A3281 | Zbl 0199.41203

[LL] L. Landau, E. Lifchitz, Mécanique Quantique, Théorie non relativiste, Éd. MIR Moscou, 1966. | Zbl 0144.47605

[P] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Librairie Albert Blanchard, 1987 (en plusieurs tomes).

[V] A. Voros, The return of the quartic oscillator (the complex WKB method). Annales Institut H. Poincaré, 29, 3 (1983). | Numdam | Zbl 0526.34046