Soit l’ensemble des mesures de Dirichlet sur le tore . On montre que est un analytique non borélien pour la topologie préfaible et n’est pas fermé en norme. Plus précisément, on montre que ne peut pas être séparé par un borélien préfaible de (ou même ), l’ensemble des mesures étrangères à , étendant ainsi les résultats de Kaufman, Kechris et Lyons sur et , et exhibant de nombreux exemples d’analytiques non boréliens.
Let be the set of all Dirichlet measures on the unit circle. We prove that is a non Borel analytic set for the weak* topology and that is not norm-closed. More precisely, we prove that there is no weak* Borel set which separates from (or even , the set of all measures singular with respect to every measure in . This extends results of Kaufman, Kechris and Lyons about and and gives many examples of non Borel analytic sets.
@article{AIF_1993__43_1_111_0, author = {Kahane, Sylvain}, title = {On the complexity of sums of Dirichlet measures}, journal = {Annales de l'Institut Fourier}, volume = {43}, year = {1993}, pages = {111-123}, doi = {10.5802/aif.1323}, mrnumber = {94h:43003}, zbl = {0766.28001}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1993__43_1_111_0} }
Kahane, Sylvain. On the complexity of sums of Dirichlet measures. Annales de l'Institut Fourier, Tome 43 (1993) pp. 111-123. doi : 10.5802/aif.1323. http://gdmltest.u-ga.fr/item/AIF_1993__43_1_111_0/
[1] Antistable classes of thin sets, Illinois J. Math., 37-1 (1993). | MR 94g:43005 | Zbl 0793.42003
,[2] Topics on analytic sets, Fund. Math., 139 (1991), 215-229. | MR 93d:28005 | Zbl 0764.28002
,[3] Ordinal ranking on measures annihilating thin sets, Trans. Amer. Math. Soc., 310 (1988), 747-758. | MR 89m:43013 | Zbl 0706.43007
, ,[4] Mixing and asymptotic distribution modulo 1, Ergod. Th. & Dyn. Syst., 8 (1988), 597-619. | MR 90d:28019 | Zbl 0645.10042
,