Harmonic analysis of spherical functions on SU(1,1)
Benyamini, Y. ; Weit, Yitzhak
Annales de l'Institut Fourier, Tome 42 (1992), p. 671-694 / Harvested from Numdam

Soit L 1 (KG/K) l’algèbre des fonctions sphériques intégrales sur SU(1,1), munie de l’opération de convolution comme multiplication. C’est une algèbre commutative semi-simple. Nous utilisons la transformation de Gelfand pour étudier les idéaux de L 1 (KG/K). En particulier, nous trouvons des conditions sur un idéal qui garantissent qu’il est identique à L 1 (KG/K), ou à L 0 1 (KG/K).

Les fonctions sphériques sur SU(1,1) se représentent naturellement comme des fonctions radiales sur le disque unité D du plan complexe. À l’aide de cette représentation, nous appliquons les résultats précédents à la caractérisation des fonctions harmoniques et holomorphes sur D.

Denote by L 1 (KG/K) the algebra of spherical integrable functions on SU(1,1), with convolution as multiplication. This is a commutative semi-simple algebra, and we use its Gelfand transform to study the ideals in L 1 (KG/K). In particular, we are interested in conditions on an ideal that ensure that it is all of L 1 (KG/K), or that it is L 0 1 (KG/K). Spherical functions on SU(1,1) are naturally represented as radial functions on the unit disk D in the complex plane. Using this representation, these results are applied to characterize harmonic and holomorphic functions on D.

@article{AIF_1992__42_3_671_0,
     author = {Benyamini, Y. and Weit, Yitzhak},
     title = {Harmonic analysis of spherical functions on $SU(1,1)$},
     journal = {Annales de l'Institut Fourier},
     volume = {42},
     year = {1992},
     pages = {671-694},
     doi = {10.5802/aif.1305},
     mrnumber = {94d:43009},
     zbl = {0763.43006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1992__42_3_671_0}
}
Benyamini, Y.; Weit, Yitzhak. Harmonic analysis of spherical functions on $SU(1,1)$. Annales de l'Institut Fourier, Tome 42 (1992) pp. 671-694. doi : 10.5802/aif.1305. http://gdmltest.u-ga.fr/item/AIF_1992__42_3_671_0/

[A] M.G. Agranovskii, Tests for holomorphy in symmetric domains, Siberian Math. J., 22 (1981), 171-179. | Zbl 0475.32002

[BY] C.A. Berenstein and P. Yang, An overdetermined Neuman problem in the unit disk, Advances in Math., 44 (1982), 1-17. | MR 84e:35107 | Zbl 0488.35063

[BZ] C.A. Berenstein and L. Zalcman, Pomepin's problem on spaces of constant curvature, J. Analyse Math., 30 (1976), 113-130. | MR 55 #11172 | Zbl 0332.35033

[CD] G. Choquet and J. Deny, Sur l'équation de convolution µ = µ * σ, C.R. Acad. Sc. Paris, 250 (1960), 779-801. | MR 22 #9808 | Zbl 0093.12802

[EM1] L. Ehrenpreis and F.I. Mautner, Some properties of the Fourier transform on semi-simple Lie groups I, Ann. of Math., 61 (1955), 406-439. | MR 16,1017b | Zbl 0066.35701

[EM2] L. Ehrenpreis and F.I. Mautner, Some properties of the Fourier transform on semi-simple Lie groups III, Trans. Amer. Math. Soc., 90 (1959), 431-484. | MR 21 #1541 | Zbl 0086.09904

[Fo] S.R. Foguel, On iterates of convolutions, Proc. Amer. Math. Soc., 47 (1975), 368-370. | MR 51 #11012 | Zbl 0299.43004

[FW] S.R. Foguel and B. Weiss, On convex power series of conservative Markov operators, Proc. Amer. Math. Soc., 38 (1973), 325-330. | MR 47 #2030 | Zbl 0268.47014

[Fu1] H. Furstenberg, A Poisson formula for semi-simple groups, Ann. of Math., 77 (1963), 335-386. | MR 26 #3820 | Zbl 0192.12704

[Fu2] H. Furstenberg, Boundaries of Riemannian symmetric spaces, in Symmetric Spaces, Marcel Dekker Inc., New-York, 1972 (W.M. Boothby and G.L. Weiss, Editors), 359-377. | MR 55 #10969 | Zbl 0241.22028

[G] V.P. Gurarii, Harmonic analysis in spaces with weights, Trans. Moscow Math. Soc., 35 (1979), 21-75. | MR 58 #17684 | Zbl 0425.43007

[H] H. Hedenmalm, On the primary ideal structure at inifinity for analytic Beurling algebras, Ark. Mat., 23 (1985), 129-158. | MR 87d:46056 | Zbl 0575.46045

[Ho] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, New Jersy, 1962. | MR 24 #A2844 | Zbl 0117.34001

[K] B.I. Korenblum, A generalization of Wiener's Tauberian Theorem and harmonic analysis of rapidly increasing functions, (Russian), Trudy Moskov. Mat. Obš, 7 (1958), 121-148.

[KT] Y. Katznelson and L. Tzafriri, On power-bounded operators, J. Func. Anal., 68 (1986), 313-328. | MR 88e:47006 | Zbl 0611.47005

[L] S. Lang, SL2(R), Addison-Wesley, Reading, Mass, 1975.

[RW] T. Ramsey and Y. Weit, Ergodic and mixing properties of measures on locally compact Abelian groups, Proc. Amer. Math. Soc., 92 (1984), 519-520. | MR 86b:43014 | Zbl 0562.43001

[S] M. Sugiura, Unitary Representations and Harmonic Analysis, an Introduction, North-Holland, 1975. | MR 58 #16977 | Zbl 0344.22001

[T] E.C. Titchmarsh, Theory of Functions, 2nd ed., Oxford University Press, 1939. | JFM 65.0302.01

[Z] L. Zalcman, Analyticity and the Pompeiu Problem, Arch. Rat. Mech. Anal., 47 (1972), 237-254. | MR 50 #582 | Zbl 0251.30047