Nous prouvons l’unicité du prolongement pour les solutions de l’inégalité , où est une partie connexe de et appartient aux espaces de Morrey , avec et . Ces espaces contiennent pour (voir L. Hörmander, Comm. PDE, 8 (1983, 21-64 et Barceló, Kenig, Ruiz, Sogge, Ill. J. of Math., 32-2 (1988), 230-245).
We prove unique continuation for solutions of the inequality , a connected set contained in and is in the Morrey spaces , with and . These spaces include for (see [H], [BKRS]). If , the extra assumption of being small enough is needed.
@article{AIF_1991__41_3_651_0, author = {Ruiz, Alberto and Vega, Luis}, title = {Unique continuation for the solutions of the laplacian plus a drift}, journal = {Annales de l'Institut Fourier}, volume = {41}, year = {1991}, pages = {651-663}, doi = {10.5802/aif.1268}, mrnumber = {92k:35043}, zbl = {0772.35008}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1991__41_3_651_0} }
Ruiz, Alberto; Vega, Luis. Unique continuation for the solutions of the laplacian plus a drift. Annales de l'Institut Fourier, Tome 41 (1991) pp. 651-663. doi : 10.5802/aif.1268. http://gdmltest.u-ga.fr/item/AIF_1991__41_3_651_0/
[BKRS] Weighted Sobolev inequalities and unique continuation for the Laplaciaan plus lower order terms, III. J. of Math., 32, n.2 (1988), 230-245. | MR 89h:35048 | Zbl 0689.35015
, , , ,[C] Proprietá di inclusione per spazi di Morrey, Ricerche Mat., 12 (1963), 67-896. | MR 27 #6157 | Zbl 0192.22703
,[CS] Unique continuation for ∆ + V and the C. Fefferman-Phong class, preprint. | Zbl 0702.35034
, ,[ChR] Uniform L2 weighted inequalities, Proc. A.M.S., to appear. | Zbl 0745.35007
, ,[ChF] A remark on a paper by C. Fefferman, Proc. A.M.S., (Feb. 1990), 407-409. | MR 91a:46030 | Zbl 0694.46029
, ,[FeP] Lower bounds for Schrödinger equations, Journées Eqs. aux deriv. partielles, St. Jean de Monts, 1982. | Numdam | Zbl 0492.35057
, ,[GL] Unique continuation for elliptic operators; a geometric variational approach, Comm. Pure Appl. Math., 40 (1987), 347-366. | MR 88j:35046 | Zbl 0674.35007
, ,[H] Uniqueness theorem for second order differential operators, Comm. PDE, 8 (1983), 21-64. | Zbl 0546.35023
,[Je] Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. In Math., 63 (1986), 118-134. | MR 88b:35218 | Zbl 0627.35008
,[Jo] Calderón-Zygmund operators, pseudo-differential operators, and the Cauchyintegral of Calderón, Lecture Notes in Math., Springer Verlag, 1983. | Zbl 0508.42021
,[K] Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation. Harmonic Analysis and PDE'S, Proceedings El Escorial 1987, Springer Verlag, 1384, (1989), 69-90. | Zbl 0685.35003
,[P] On the theory of Lp,λ spaces, J. Funct. Anal., 4 (1969), 71-87. | MR 39 #3300 | Zbl 0175.42602
,[RV] Unique continuation for Schrödinger operators in Morrey spaces, preprint. | Zbl 0809.47046
, ,[St] L(p,λ)-spaces and interpolation, Comm. on Pure and Appl. Math., XVII (1964), 293-306. | MR 31 #2608 | Zbl 0149.09201
,[Se] Oscillatory integrals in Fourier Analysis. In: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, 112 (1986), 307-355. | MR 88g:42022 | Zbl 0618.42006
,[T] A restriction theorem for the Fourier transform, Bull. AMS, (1975), 477-478. | MR 50 #10681 | Zbl 0298.42011
,