Dans cet article on démontre que la fibration de par des potentiels isospectraux pour l’équation de Schrödinger périodique à une dimension est triviale. Ce résultat peut être appliqué aux solutions de lacunes de l’équation de Korteweg-de Vries (KDV) sur le cercle : on en déduit que KdV — un système hamiltonien complètement intégrable — a des variables action-angle globales.
In this article we prove that the fibration of by potentials which are isospectral for the 1-dimensional periodic Schrödinger equation, is trivial. This result can be applied, in particular, to -gap solutions of the Korteweg-de Vries equation (KdV) on the circle: one shows that KdV, a completely integrable Hamiltonian system, has global action-angle variables.
@article{AIF_1991__41_3_539_0, author = {Kappeler, Thomas}, title = {Fibration of the phase space for the Korteweg-de Vries equation}, journal = {Annales de l'Institut Fourier}, volume = {41}, year = {1991}, pages = {539-575}, doi = {10.5802/aif.1265}, mrnumber = {92k:58212}, zbl = {0731.58033}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1991__41_3_539_0} }
Kappeler, Thomas. Fibration of the phase space for the Korteweg-de Vries equation. Annales de l'Institut Fourier, Tome 41 (1991) pp. 539-575. doi : 10.5802/aif.1265. http://gdmltest.u-ga.fr/item/AIF_1991__41_3_539_0/
[CL] Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. | MR 16,1022b | Zbl 0064.33002
, ,[DU] On global action-angle coordinates, C.P.A.M., 33 (1980), 687-706. | MR 82d:58029 | Zbl 0439.58014
,[FIT] An explicit solution of the inverse problem for Hill's equation, SIAM J. Math. Anal., 18 (1987), 46-53. | MR 88d:34037 | Zbl 0622.34021
, , ,[GT1] Gaps and bands of one dimensional periodic Schrödinger operators, Comm. Math. Helv., 59 (1984), 258-312. | MR 85i:34004 | Zbl 0554.34013
, ,[GT2] Gaps and bands of one dimensional periodic Schrödinger operators II, Comm. Math. Helv., 62 (1987), 18-37. | MR 88g:34028 | Zbl 0649.34034
, ,[GK] Introduction to the Theory of Linear Non Selfadjoint Operators, Transl. of Math Monogr., vol. 18, AMS, Providence, 1969. | MR 39 #7447 | Zbl 0181.13504
, ,[Ka] Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, 1976. | MR 53 #11389 | Zbl 0342.47009
,[Kp] On the periodic spectrum of the 1-dimensional Schrödinger operator, Comm. Math. Helv., 65 (1990), 1-3. | MR 91a:34059 | Zbl 0703.34085
,[Ma] Sturm Liouville Operators and Applications, Birkäuser, Basel, 1986. | Zbl 0592.34011
,[MM] The spectrum of Hill's equation, Inv. Math., 30 (1975), 217-274. | MR 53 #936 | Zbl 0319.34024
, ,[MW] Hill's Equation, Wiley-Interscience, New York, 1986.
, ,[MT] Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, CPAM, 24 (1976), 143-226. | MR 55 #761 | Zbl 0339.34024
, ,[PS] Aufgaben und Lehrsätze aus der Analysis, vol. 2, 3rd ed., Grundlehren, Bd 20, Springer-Verlag, New York, 1964. | Zbl 0122.29704
, ,[PT] Inverse Spectral Theory, Academic Press, 1987. | Zbl 0623.34001
, ,