On equivariant harmonic maps defined on a Lorentz manifold
Ma Li
Annales de l'Institut Fourier, Tome 41 (1991), p. 511-518 / Harvested from Numdam

Nous démontrons à l’aide du principe du minimax qu’il existe une infinité d’applications harmoniques, G-équivariantes, définies sur une variété lorentzienne donnée et à valeurs dans une riemannienne compacte.

In this paper, we prove by using the minimax principle that there exist infinitely many G-equivariant harmonic maps from a specific Lorentz manifold to a compact Riemannian manifold.

@article{AIF_1991__41_2_511_0,
     author = {Ma Li},
     title = {On equivariant harmonic maps defined on a Lorentz manifold},
     journal = {Annales de l'Institut Fourier},
     volume = {41},
     year = {1991},
     pages = {511-518},
     doi = {10.5802/aif.1263},
     mrnumber = {92m:58026},
     zbl = {0754.53046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1991__41_2_511_0}
}
Ma Li. On equivariant harmonic maps defined on a Lorentz manifold. Annales de l'Institut Fourier, Tome 41 (1991) pp. 511-518. doi : 10.5802/aif.1263. http://gdmltest.u-ga.fr/item/AIF_1991__41_2_511_0/

[E] J. Eells Jr, Proc 1981 Shanghai-Hefei Symps. Diff. Geom. Diff. Eq., Sci. Press, Beijing, (1984), 55-73.

[EL] J. Eells Jr and L. Lemaire, Another Report on Harmonic Maps, Bull. London Math. Soc., 20 (1988), 385-524. | MR 89i:58027 | Zbl 0669.58009

[G] Gu Chao-Hao, On the Two-dimensional Minkowski space, Comm. Pure and Appl. Math., 33 (1980), 727-738. | Zbl 0475.58005

[M] J. Milnor, Morse Theory, Princeton, 1963. | Zbl 0108.10401

[P1] R. S. Palais, Lusternik-Schnirelmann theory on Banach Manifold, Topology, 5 (1966), 115-132. | MR 41 #4584 | Zbl 0143.35203

[P2] R. S. Palais, The Principle of Symmetric Criticality, Comm. Math. Phys., 69 (1979), 19-30. | MR 81c:58026 | Zbl 0417.58007

[V-PS] M. Vigue-Poirrier, D. Sullivan, The Homology Theory of the Closed Geodesic Problem, J. Diff. Geom., 11 (1976), 633-644. | MR 56 #13269 | Zbl 0361.53058