Sur une surface riemannienne compacte analytique réelle, nous estimons l’aire du domaine sur lequel une fonction propre du laplacien est positive.
Sur une variété riemannienne compacte de dimension , nous estimons le rapport entre le minimum et le maximum d’une fonction propre du laplacien.
On a two-dimensional compact real analytic Riemannian manifold we estimate the volume of the set on which the eigenfunction of the Laplace-Beltrami operator is positive.
On an -dimensional compact smooth Riemannian manifold, we estimate the relation between supremum and infimum of an eigenfunction of the Laplace operator.
@article{AIF_1991__41_1_259_0, author = {Nadirashvili, Nikolai S.}, title = {Metric properties of eigenfunctions of the Laplace operator on manifolds}, journal = {Annales de l'Institut Fourier}, volume = {41}, year = {1991}, pages = {259-265}, doi = {10.5802/aif.1256}, mrnumber = {92g:58130}, zbl = {0726.58050}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1991__41_1_259_0} }
Nadirashvili, Nikolai S. Metric properties of eigenfunctions of the Laplace operator on manifolds. Annales de l'Institut Fourier, Tome 41 (1991) pp. 259-265. doi : 10.5802/aif.1256. http://gdmltest.u-ga.fr/item/AIF_1991__41_1_259_0/
[1] Problèmes aux limites non homogènes et application, vol. 1, Dunod, Paris, 1968. | Zbl 0165.10801
, ,[2] Partial differential equations, Providence, R.I, 1974.
, , ,[3] Uber Knoten von Eigenfunnktionen des Laplace-Beltrami Operators, Math. Z., 158 (1978), 15-21. | Zbl 0349.58012
,[4] Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math., 93 (1988), 161-183. | MR 89m:58207 | Zbl 0659.58047
, ,[5] Elliptic partial differential equations of second order, Second Edition, Springer, 1983. | MR 86c:35035 | Zbl 0562.35001
, ,