Classifying toposes and foliations
Moerdijk, Ieke
Annales de l'Institut Fourier, Tome 41 (1991), p. 189-209 / Harvested from Numdam

On démontre que pour tout groupoïde topologique étale G (par exemple, le groupoïde d’holonomie d’un feuilletage) l’espace classifiant est du même type d’homotopie que le topos classifiant. On déduit que le groupe fondamental de l’espace des feuilles au sens de Haefliger est isomorphe à celui de Van Est. En plus, on donne une nouvelle démonstration du théorème de Segal concernant l’espace classifiant BΓ q de Haefliger.

For any etale topological groupoid G (for example, the holonomy groupoid of a foliation), it is shown that its classifying topos is homotopy equivalent to its classifying space. As an application, we prove that the fundamental group of Haefliger for the (leaf space of) a foliation agrees with the one introduced by Van Est. We also give a new proof of Segal’s theorem on Haefliger’s classifying space BΓ q .

@article{AIF_1991__41_1_189_0,
     author = {Moerdijk, Ieke},
     title = {Classifying toposes and foliations},
     journal = {Annales de l'Institut Fourier},
     volume = {41},
     year = {1991},
     pages = {189-209},
     doi = {10.5802/aif.1254},
     mrnumber = {92i:57028},
     zbl = {0727.57029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1991__41_1_189_0}
}
Moerdijk, Ieke. Classifying toposes and foliations. Annales de l'Institut Fourier, Tome 41 (1991) pp. 189-209. doi : 10.5802/aif.1254. http://gdmltest.u-ga.fr/item/AIF_1991__41_1_189_0/

[1] (SGA4) M. Artin, A. Grothendieck, J.-L. Verdier, Théorie de topos et cohomologie des schémas, SLN, 269, 270 (1972). | Zbl 0237.00012

[2] M. Artin, B. Mazur, Etale homotopy, SLN, 100 (1969). | MR 39 #6883 | Zbl 0182.26001

[3] R. Barre, De quelques aspects de la théorie des Q-variétés différentielles et analytiques, Ann. Inst. Fourier, Grenoble, 23-3 (1973), 227-312. | Numdam | MR 50 #1275 | Zbl 0258.57008

[4] R. Bott, Characteristic classes and foliations, in : Lectures on Algebraic and Differential Topology, SLN, 279 (1972), 1-94. | Zbl 0241.57010

[5] M. Bunge, An application of descent to a classification theorem for toposes, McGill University, preprint, 1988. | Zbl 0698.18003

[6] P. Deligne, Théorie de Hodge III, Publ. Math. IHES, 44 (1975), 5-77. | Numdam | Zbl 0237.14003

[7] R. Diaconescu, Change of base for toposes with generators, J. Pure and Appl. Alg., 6 (1975), 191-218. | MR 52 #532 | Zbl 0353.18002

[8] J. Duskin, Simplicial methods and the interpretation of “triple” cohomology, Memoirs AMS, 163 (1975). | MR 52 #14006 | Zbl 0376.18011

[9] W.T. Van Est, Rapport sur les S-atlas, Astérisque, 116 (1984), 235-292. | Zbl 0543.58003

[10] P. Gabriel, M. Zisman, Calculus of Fractions and Homotopy Theory, Springer-Verlag, 1967. | Zbl 0186.56802

[11] J. Giraud, Classifying topos ; in : F.W. Lawvere (ed.), Toposes, Algebraic Geometry and Logic, SLN, 274 (1972), 43-56. | MR 50 #2300 | Zbl 0267.18014

[12] A. Grothendieck, Revêtements étales et groupe fondamental, SLN, 224 (1971) (SGA I). | Zbl 0234.14002

[13] A. Haefliger, Feuilletages sur les variétés ouvertes, Topology, 1 (1970), 183-194. | MR 41 #7709 | Zbl 0196.26901

[14] A. Haefliger, Homotopy and Integrability, in : Manifolds, Amsterdam 1970, SLN, 197 (1971), 133-163. | MR 44 #2251 | Zbl 0215.52403

[15] A. Haefliger, Groupoïde d'holonomie et classifiants, Astérisque, 116 (1984), 235-292. | Zbl 0562.57012

[16] L. Illusie, Complexe cotangent et déformations II, SLN, 283 (1972). | MR 58 #10886b | Zbl 0238.13017

[17] J.F. Jardine, Simplicial objects in a Grothendieck topos, in : Contemporary Mathematics, vol. 55, part I (1986), 193-239. | MR 88g:18008 | Zbl 0606.18006

[18] J.F. Jardine, Simplicial presheaves, J. Pure and Appl. Alg., 47, 35-87. | MR 88j:18005 | Zbl 0624.18007

[19] P.T. Johnstone, Topos Theory, Academic Press, 1977. | MR 57 #9791 | Zbl 0368.18001

[20] A. Joyal, Letter to A. Grothendieck, (1984).

[21] A. Joyal, G. Wraith, K(π, n)-toposes, in : Contempary Mathematics, vol 30 (1983).

[22] A. Joyal, M. Tierney, An extension of the Galois theory of Grothendieck, Memoirs AMS, 309 (1984). | MR 86d:18002 | Zbl 0541.18002

[23] I. Moerdijk, The classifying topos of a continous groupoid I, Transactions AMS, 310 (1988), 629-668. | MR 90a:18005 | Zbl 0706.18007

[24] I. Moerdijk, Toposes and Groupoids, in : F. Borceux (ed), Categorical Algebra and its Applications, SLN, 1348 (1988), 280-298. | MR 89m:18003 | Zbl 0659.18008

[25] P. Molino, Sur la géométrie transverse des feuilletages, Ann. Inst. Fourier, Grenoble, 25-2 (1975), 279-284. | Numdam | MR 52 #11945 | Zbl 0301.57016

[26] J. Pradines, A.A. Alta'Ai, Caractérisation universelle du groupe de van Est d'une espace de feuilles ou d'orbites, et théorème de van Kampen, preprint, 1989. | Zbl 0698.58053

[27] J. Pradines, J. Wouafa-Kamga, La catégorie des QF-variétés, CRAS (série A), 288 (1979), 717-719. | MR 80d:57018 | Zbl 0411.57026

[28] D. Quillen, Higher Algebraic K-theory : I ; in Springer LNM, 341 (1972), 85-147. | MR 49 #2895 | Zbl 0292.18004

[29] G.B. Segal, Classifying spaces and spectral sequences, Publ. Math. IHES, 34 (1968), 105-112. | Numdam | MR 38 #718 | Zbl 0199.26404

[30] G.B. Segal, Categories and cohomology theories, Topology, 13 (1974), 304-307. | MR 50 #5782 | Zbl 0284.55016

[31] G.B. Segal, Classifying spaces related to foliations, Topology, 17 (1978), 367-382. | MR 80h:57036 | Zbl 0398.57018

[32] B. Saint-Donat, Techniques de descente cohomologique, in SLN 270 (cf. [1] above), 83-162. | Zbl 0317.14007

[33] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Ac. Sc., 42 (1956), 359-363. | MR 18,144a | Zbl 0074.18103

[34] J. Tapia, Sur la cohomologie de certains espaces d'orbites, thèse, Univ. Paul Sabatier, Toulouse, 1987.