Nous démontrons des “inégalités des bons " pour l’intégale d’aire, la fonction maximale non-tangentielle, et la fonction maximale associée à la densité de l’intégrale d’aire. Nos résultats répondent à une question posée par R. F. Gundy. De plus nous démontrons un théorème du genre loi du logarithme itéré pour des fonctions harmoniques, semblable à celui de Kesten pour la suite des sommes partielles de variables indépendantes. Nos théorèmes 1 et 2 sont énoncés pour un domaine dont la frontière est lipschitzienne. Mais, ils sont tout aussi nouveaux pour .
We prove good- inequalities for the area integral, the nontangential maximal function, and the maximal density of the area integral. This answers a question raised by R. F. Gundy. We also prove a Kesten type law of the iterated logarithm for harmonic functions. Our Theorems 1 and 2 are for Lipschitz domains. However, all our results are new even in the case of .
@article{AIF_1991__41_1_137_0, author = {Banuelos, R. and Moore, C. N.}, title = {Distribution function inequalities for the density of the area integral}, journal = {Annales de l'Institut Fourier}, volume = {41}, year = {1991}, pages = {137-171}, doi = {10.5802/aif.1252}, mrnumber = {92k:42025}, zbl = {0727.42016}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1991__41_1_137_0} }
Banuelos, R.; Moore, C. N. Distribution function inequalities for the density of the area integral. Annales de l'Institut Fourier, Tome 41 (1991) pp. 137-171. doi : 10.5802/aif.1252. http://gdmltest.u-ga.fr/item/AIF_1991__41_1_137_0/
[1] An analogue of Kolmogorov's law of the iterated logarithm for harmonic functions, Duke Math. J., 57 (1988), 37-68. | MR 89k:42019 | Zbl 0666.31002
, and ,[2] Sharp estimates for the nontangential maximal function and the Lusin area function in Lipschitz domains, Trans. Amer. Math. Soc., 312 (1989) 641-662. | MR 90i:42030 | Zbl 0675.42016
and ,[3] Laws of the iterated logarithm, sharp good-λ inequalities and Lp estimates for caloric and harmonic functions, Indiana Univ. Math. J., 38 (1989), 315-344. | Zbl 0718.31002
and ,[4] (Semi) Martingale inequalities and local times, A. Wahrch. Verw. Gebiete, 55 (1981), 237-354. | MR 82h:60092 | Zbl 0451.60050
and ,[5] Semi-martingale inequalities via the Garsia-Rodemich-Rumsey Lemma, and applications to local times, J. Funct. Anal., 49,2 (1989), 198-229. | MR 84f:60073 | Zbl 0505.60054
and ,[6] Séminaire de Probabilités XXI, Lecture Notes in Math., Springer-Verlag, New York, 1247 (1987). | Numdam | Zbl 0606.00022 | Zbl 0616.60046
,[7] Densité de l'intégrale d'aire dans Rn+1+ et limites non tangentielles, Invent. Math., 93 (1988), 297-308. | MR 89h:31008 | Zbl 0655.31004
,[8] Classe L log L et densité de l'intégrale d'aire dans Rn+1+, Ann. of Math., 128 (1988), 603-618. | MR 90a:42013 | Zbl 0666.60071
and ,[9] Distribution function inequalities for the area integral, Studia Math., 44 (1972), 527-544. | MR 49 #5309 | Zbl 0219.31009
and ,[10] Some weighted norm inequalities involving the Schrödinger operators, Comment. Math. Helv., 60 (1985), 217-246. | MR 87d:42027 | Zbl 0575.42025
, and ,[11] Weighted norm inequalities for the Lusin area integral and nontangential maximal functions for harmonic functions in Lipschitz domains, Studia Math., 47 (1980), 297-314. | MR 82f:31003 | Zbl 0449.31002
,[12] On the Barlow-Yor inequalities for local time, Séminaire de Probabilitiés XXI, Lecture Notes in Math., Springer-Verlag, New York, 1247 (1987). | Numdam | MR 89h:60122 | Zbl 0617.60041
,[13] Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, New York/Berlin, 1984. | MR 85k:31001 | Zbl 0549.31001
,[14] The density of the area integral, Conference on Harmonic Analysis in Honor of A. Zygmund, Beckner, W., Calderón, A P., Fefferman, R., and Jones, P., editors, Wadsworth, Belmont, California, 1983. | MR 85k:42048
,[15] Some topics in probability and analysis, BMS, #70 (1989). | MR 91c:60059 | Zbl 0673.60050
,[16] The density of the area integral in Rn+1+, Ann. Inst. Fourier (Grenoble), 35,1 (1985), 215-224. | Numdam | MR 86e:26012 | Zbl 0544.31012
and ,[17] Stochastic differential equations and diffusion processes, North Holland Kodansha, 1981. | MR 84b:60080 | Zbl 0495.60005
and ,[18] Boundary value problems on Lipschitz domains, MAA Studies in Math., 23 (1982), 1-68. | MR 85f:35057 | Zbl 0529.31007
and ,[19] An iterated law for local time, Duke Math. J., 32 (1965), 447-456. | MR 31 #2751 | Zbl 0132.12701
,[20] Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970. | MR 44 #7280 | Zbl 0207.13501
,[21] Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., 28 (1979), 511-544. | MR 81f:42021 | Zbl 0429.46016
,