Smoothing of real algebraic hypersurfaces by rigid isotopies
Nabutovsky, Alexander
Annales de l'Institut Fourier, Tome 41 (1991), p. 11-25 / Harvested from Numdam

Soit M n R n+1 une hypersurface compacte lisse. Nous définissons κ(M n ) comme le rapport diam R n+1 (M n )/r(M n )r(M n ) est la distance de M n à l’ensemble central de M n (en d’autres termes, r(M n ) est le rayon maximal d’un voisinage tubulaire ouvert de M n sans self-intersection). Nous prouvons que chaque hypersurface algébrique réelle non-singulière de degré d peut être liée par une isotopie rigide avec une hypersurface algébrique Σ 0 n de degré d telle que κ(Σ 0 n )exp(c(n)d α(n)d n+1 ). Ici c(n), α(n) ne dépendent que de n, et isotopie rigide est une isotopie qui passe seulement à travers des hypersurfaces algébriques de degré d.

Comme application de ce résultat, nous démontrons qu’il existe des constantes c,β telles que chaque paire de courbes planaires algébriques réelles non-singulières de degré d peut être liée par une isotopie qui passe à travers des courbes algébriques de degré exp(cd βd 2 ). On en déduit par ailleurs, pour n fixé, une borne supérieure en fonction de d, du nombre minimal de simplexes dans une triangulation C d’une hypersurface algébrique de dimension n, non singulière de degré d.

Define for a smooth compact hypersurface M n of R n+1 its crumpleness κ(M n ) as the ratio diam R n+1 (M n )/r(M n ), where r(M n ) is the distance from M n to its central set. (In other words, r(M n ) is the maximal radius of an open non-selfintersecting tube around M n in R n+1 .)

We prove that any n-dimensional non-singular compact algebraic hypersurface of degree d is rigidly isotopic to an algebraic hypersurface of degree d and of crumpleness exp(c(n)d α(n)d n+1 ). Here c(n), α(n) depend only on n, and rigid isotopy means an isotopy passing only through hypersurfaces of degree d. As an application, we show that for some constants c,β any two isotopic smooth non-singular algebraic compact curves of degree d in R 2 can be connected by an isotopy passing only through algebraic curves of degree exp(cd βd 2 ). As another application, we show how to derive an upper bound in terms of d only (for a fixed n) for the minimal number of simplices in a C - triangulation of a compact non-singular n-dimensional algebraic hypersurface of degree d.

@article{AIF_1991__41_1_11_0,
     author = {Nabutovsky, Alexander},
     title = {Smoothing of real algebraic hypersurfaces by rigid isotopies},
     journal = {Annales de l'Institut Fourier},
     volume = {41},
     year = {1991},
     pages = {11-25},
     doi = {10.5802/aif.1246},
     mrnumber = {92j:14070},
     zbl = {0746.14022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1991__41_1_11_0}
}
Nabutovsky, Alexander. Smoothing of real algebraic hypersurfaces by rigid isotopies. Annales de l'Institut Fourier, Tome 41 (1991) pp. 11-25. doi : 10.5802/aif.1246. http://gdmltest.u-ga.fr/item/AIF_1991__41_1_11_0/

[AMR] R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, Springer, 1988. | Zbl 0875.58002

[ABB] F. Acquistapace, R. Benedetti, F. Broglia, Effectiveness-non effectiveness in semi-algebraic and PL geometry, Inv. Math., 102 (1) (1990), 141-156. | MR 91h:57010 | Zbl 0729.14040

[BZ] Yu. Burago, V. Zalgaller, Geometric Inequalities, Springer, 1988. | Zbl 0633.53002

[GPS] J. Goodman, R. Pollack, B. Strumfels, The intrinsic spread of a configuration in Rd, J. Amer. Math. Soc., 3 (1990), 639-651. | Zbl 0712.05021

[GV] D. Grigorjev, N. Vorobjov, Solving systems of polynomial inequalities in subexponential time, J. of Symbolic Computations, 5 (1988), 37-64. | MR 89h:13001 | Zbl 0662.12001

[GZK] I.M. Gelfand, A.V. Zelevinsky, M.M. Kapranov, On discriminants of multivariate polynomials, Funct. Analysis and Appl., 24 (1) (1990), 1-4 (in Russian). | Zbl 0719.15003

[L] D. Lazard, Résolutions des systèmes d'équations algébriques, Theor. Comput. Sci., 15 (1981), 77-110. | MR 82i:12001 | Zbl 0459.68013

[LF1] V. Lagunov, A. Fet, Extremal problems for hypersurfaces of a given topological type, I, Siberian Math. J., 4(1) (1963), 145-176 (in Russian).

[LF2] V. Lagunov, A. Fet, Extremal problems for hypersurfaces of a given topological type, II, Siberian Math. J., 6(5) (1965), 1026-1036 (in Russian). | Zbl 0173.50403

[M] D. Milman, The central function of the boundary of a domain and its differentiable properties, J. of Geometry, 14 (1980), 182-202. | MR 82k:26007 | Zbl 0448.53006

[MW] D. Milman, Z. Waksman, On topological properties of the central set of a bounded domain in Rn, J. of Geometry, 15 (1981), 1-7. | MR 82g:53008 | Zbl 0454.57004

[Mo] E.E. Moise, Geometric Topology in Dimensions 2 and 3, Springer, 1977. | MR 58 #7631 | Zbl 0349.57001

[N1] A. Nabutovsky, Nonrecursive functions in real algebraic geometry, Bull. Amer. Math. Soc., 20 (1), 61-65. | MR 89j:14016 | Zbl 0692.14013

[N2] A. Nabutovsky, Isotopies and nonrecursive functions in real algebraic geometry, in Real Analytic and Algebraic Geometry, edited by M. Galbiati and A. Tognoli, Springer, Lect. Notes in Math., n° 1420, pp. 194-205. | MR 91c:14071 | Zbl 0715.14045

[N3] A. Nabutovsky, Number of solutions with a norm bounded by a given constant of a semilinear elliptic PDE with a generic right hand side, to appear in Trans. Amer. Math. Soc. | Zbl 0762.35033

[R] V. Rokhlin, Complex topological characteristics of real algebraic curves, Russian Math. Surveys, 33 (5) (1978), 85-98. | MR 81m:14024 | Zbl 0444.14018

[T] J. Thorpe, Elementary Topics in Differential Geometry, Springer, 1979. | MR 80e:53001 | Zbl 0404.53001

[VEL] A.G. Vainstein, V.A. Efremovitch, E.A. Loginov, On the skeleton of a Riemann manifold with an edge, Russian Math. Surveys, 33(3) (1978), 181-182. | Zbl 0397.53032

[Vi] O. Viro, Progress in the topology of real algebraic varieties over the last six years, Russian Math. Surveys, 41 (3) (1986), 55-82. | Zbl 0619.14015

[V] N. Vorobjov, Estimates of real roots of a system of algebraic equations, J. of Soviet Math., 34 (1986), 1754-1762. | Zbl 0595.65051

[VW] B.L. Van Der Waerden, Modern Algebra, v. II, Frederik Ungar Publishing Co, 1950.

[Wh] H. Whitney, Geometric Integration Theory, Princeton University Press, Princeton, 1957. | MR 19,309c | Zbl 0083.28204