Une sous-variété de l’espace euclidien est dite infinitésimalement rigide si toute déformation différentiable isométrique au premier ordre est triviale. Nous montrons ici que certaines conditions locales ou globales bien connues pour entraîner la rigidité isométrique entraînent aussi la rigidité infinitésimale.
A submanifold of the Euclidean space is said to be infinitesimally rigid if any smooth variation which is isometric to first order is trivial. The main purpose of this paper is to show that local or global conditions which are well known to imply isometric rigidity also imply infinitesimal rigidity.
@article{AIF_1990__40_4_939_0, author = {Dajczer, M. and Rodriguez, L. L.}, title = {Infinitesimal rigidity of Euclidean submanifolds}, journal = {Annales de l'Institut Fourier}, volume = {40}, year = {1990}, pages = {939-949}, doi = {10.5802/aif.1242}, mrnumber = {92d:53048}, zbl = {0727.53011}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1990__40_4_939_0} }
Dajczer, M.; Rodriguez, L. L. Infinitesimal rigidity of Euclidean submanifolds. Annales de l'Institut Fourier, Tome 40 (1990) pp. 939-949. doi : 10.5802/aif.1242. http://gdmltest.u-ga.fr/item/AIF_1990__40_4_939_0/
[A] Rigidity for spaces of class greater than one, Amer. J. Math., 61 (1939), 633-644. | JFM 65.0802.01 | MR 1,28g | Zbl 0021.15803
,[CD] Conformal rigidity, Amer. J. of Math., 109 (1987), 963-985. | MR 89e:53016 | Zbl 0631.53043
and ,[DG] Real Kaehler submanifolds and uniqueness of the Gauss map, J. Diff. Geometry, 22 (1985), 13-28. | MR 87g:53088b | Zbl 0587.53051
and ,[DR1] Rigidity of real Kaehler submanifolds, Duke Math. J., 53 (1986), 211-220. | MR 87g:53089 | Zbl 0599.53005
and ,[DR2] Hypersurfaces which make a constant angle, in "Differential Geometry", Longman Sc. & Tech., Harlow, 1990. | Zbl 0723.53004
and ,[GR] Infinitesimal rigidity of submanifolds, J. Diff. Geometry, 10 (1975), 49-60. | MR 51 #1675 | Zbl 0302.53029
and ,[S] On hypersurfaces with no negative sectional curvature, Amer. J. Math., 82 (1960), 609-630. | MR 22 #7087 | Zbl 0194.22701
,[Y] Infinitesimal variations of submanifolds, Kodai Math. J., 1 (1978), 30-44. | MR 58 #7504 | Zbl 0388.53017
,