Stability of the inverse problem in potential scattering at fixed energy
Stefanov, Plamen
Annales de l'Institut Fourier, Tome 40 (1990), p. 867-884 / Harvested from Numdam

Nous prouvons une estimation du type q 1 -q 2 L Cφ(A q 1 -A q 2 R,3/2-1/2 ), où A q i (ω,θ), i=1,2 est l’amplitude de “scattering” relative au potentiel à support compact q i (x) à un niveau d’énergie fixée k= const., où φ(t)=(-lnt) -δ , 0<δ<1 et · R,3/2-1/2 est une norme définie.

We prove an estimate of the kind q 1 -q 2 L Cφ(A q 1 -A q 2 R,3/2-1/2 ), where A q i (ω,θ), i=1,2 is the scattering amplitude related to the compactly supported potential q i (x) at a fixed energy level k= const., φ(t)=(-lnt) -δ , 0<δ<1 and · R,3/2-1/2 is a suitably defined norm.

@article{AIF_1990__40_4_867_0,
     author = {Stefanov, Plamen},
     title = {Stability of the inverse problem in potential scattering at fixed energy},
     journal = {Annales de l'Institut Fourier},
     volume = {40},
     year = {1990},
     pages = {867-884},
     doi = {10.5802/aif.1239},
     mrnumber = {92d:35217},
     zbl = {0715.35082},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1990__40_4_867_0}
}
Stefanov, Plamen. Stability of the inverse problem in potential scattering at fixed energy. Annales de l'Institut Fourier, Tome 40 (1990) pp. 867-884. doi : 10.5802/aif.1239. http://gdmltest.u-ga.fr/item/AIF_1990__40_4_867_0/

[A] S. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172. | MR 89f:35195 | Zbl 0616.35082

[EMOT] A. Erdélyi, W. Magnus, F. Oberhettinger and F. C. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw Hill, New York, 1953. | MR 15,419i | Zbl 0052.29502

[L] R. Leis, Zur Monotonie der Eigenwerte selbstadjungierter elliptischer Differentialgleichungen, Math. Z., 96 (1967), 26-32. | MR 34 #8008 | Zbl 0143.14501

[M] C. Müller, Grundprobleme der Mathematischen Theorie Elektromagnetischer Schwingungen, Springer, 1957. | Zbl 0087.21305

[Na1] A. Nachman, Reconstruction from boundary measurements, Ann. Math., 128 (1988), 531-576. | MR 90i:35283 | Zbl 0675.35084

[Na2] A. Nachman, Exact reconstruction procedures for some inverse scattering and inverse boundary problems, Meeting on inverse problems, Montpellier, 1989.

[NSU] A. Nachman, J. Sylvester and G. Uhlmann, An n-dimensional Borg-Levison theorem, Comm. Math. Physics, 115 (1988), 595-605. | MR 89g:35082 | Zbl 0644.35095

[NO] R. G. Novikov, Multidimensional inverse spectral problems for the equation - Δѱ + (v(x) - Eu(x))ѱ = 0, Funkt. Analizi i Ego Prilozheniya, 22 (4) (1988), 11-12; Translation in Funct. Anal. and its Appl., 22 (4) (1988), 263-272. | MR 90h:35243 | Zbl 0689.35098

[R] A. G. Ramm, Recovery of the potential from fixed energy scattering data, Inverse Probl., 4 (1988), 877-886. | MR 90g:35165a | Zbl 0632.35075

[RS] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV, Accademic Press, New York, 1978. | Zbl 0401.47001

[S] B. Simon, Schrödinger semigroups, Bull. A.M.S., 7 (3) (1982), 447-526. | MR 86b:81001a | Zbl 0524.35002

[SU1] J. Sylvester and G. Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math., 39 (1986), 91-112. | MR 87j:35377 | Zbl 0611.35088

[SU2] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem. Ann. Math., 125 (1987), 153-169. | MR 88b:35205 | Zbl 0625.35078

[SU3] J. Sylvester and G. Uhlmann, Inverse boundary value problem at the boundary - continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197-221. | MR 89f:35213 | Zbl 0632.35074

[SU4] J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and its applications, Proceedings of meeting in Arcata, California on inverse problems, July 29-August 4, 1989. | Zbl 0713.35100