L’extension universelle vectorielle d’une courbe est décrite en termes de la géométrie de la courbe.
The universal vectorial extension of a curve is described in terms of the geometry of the curve.
@article{AIF_1990__40_4_769_0, author = {Coleman, Robert F.}, title = {Vectorial extensions of Jacobians}, journal = {Annales de l'Institut Fourier}, volume = {40}, year = {1990}, pages = {769-783}, doi = {10.5802/aif.1234}, mrnumber = {92e:14042}, zbl = {0739.14016}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1990__40_4_769_0} }
Coleman, Robert F. Vectorial extensions of Jacobians. Annales de l'Institut Fourier, Tome 40 (1990) pp. 769-783. doi : 10.5802/aif.1234. http://gdmltest.u-ga.fr/item/AIF_1990__40_4_769_0/
[C1] The Universal Vectorial Bi-extension and p-adic Heights, to appear in Inventiones. | Zbl 0763.14009
,[C2] Duality for the de Rham Cohomology of Abelian Schemes, to appear. | Numdam | Zbl 0926.14008
,[CG] p-adic Heights on Curves, Advances in Math., 17 (1989), 73-81. | MR 92d:11057 | Zbl 0758.14009
, and ,[C-C] La jacobienne généralisée d'une courbe relative, C.R. Acad. Sci., Paris, t. 289 (279), 203-206. | MR 81g:14021 | Zbl 0447.14005
,[G] Revêtement Étale et Groupe Fondamental (SGA I) SLN 224 (1971). | Zbl 0234.14002
,[MaMe] Universal Extensions and One Dimensional Crystalline Cohomology, Springer Lecture Notes, 370, 1974. | MR 51 #10350 | Zbl 0301.14016
and ,[MaT] Canonical Height Pairings via Bi-extensions, Arithmetic and Geometry, Vol. I, Birkhauser, (1983), 195-237. | MR 85j:14081 | Zbl 0574.14036
and ,[O] Rational Maps and Albanese Schemes, Thesis, University of California at Berkeley, (1984).
,[S] Groupes Algébriques et Corps de Classes, Hermann, 1959. | MR 21 #1973 | Zbl 0097.35604
,