Nous démontrons l’unicité de certaines sous-variétés minimales, par exemple, les anneaux de Clifford dans . L’idée est de regarder le placement de la sous-variété minimale par rapport au feuilletage singulier de par des anneaux de Clifford de bord deux géodésiques fixées à une distance .
We prove unicity of certain minimal submanifolds, for example Clifford annuli in . The idea is to consider the placement of the submanifold with respect to the (singular) foliation of by the Clifford annuli whose boundary are two fixed great circles a distance apart.
@article{AIF_1990__40_3_701_0, author = {Hardt, R. and Rosenberg, Harold}, title = {Open book structures and unicity of minimal submanifolds}, journal = {Annales de l'Institut Fourier}, volume = {40}, year = {1990}, pages = {701-708}, doi = {10.5802/aif.1229}, mrnumber = {92e:53009}, zbl = {0702.53039}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1990__40_3_701_0} }
Hardt, R.; Rosenberg, Harold. Open book structures and unicity of minimal submanifolds. Annales de l'Institut Fourier, Tome 40 (1990) pp. 701-708. doi : 10.5802/aif.1229. http://gdmltest.u-ga.fr/item/AIF_1990__40_3_701_0/
[GT] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR 57 #13109 | Zbl 0361.35003
& ,[H] Minimal surfaces in foliated manifolds, Comm. Math. Helv., 61 n°1 (1986), 1-32. | MR 88d:53006 | Zbl 0601.53024
,[HS] Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math., 110 (1979), 439-486. | MR 81i:49031 | Zbl 0457.49029
& ,[L] Complete minimal surfaces in Sn, Ann. of Math., 92 (1970), 335-374. | MR 42 #5170 | Zbl 0205.52001
,[M] On finiteness of the number of stable minimal hypersurfaces with a fixed boundary, Indiana U. Math. J., 35 (1986), 779-833. | MR 88b:49059 | Zbl 0592.53004
,[Sh] On surfaces of stationary bounded by two circles, or convex curves, in parallel planes, Ann. of Math., 3 (1956), 77-90. | MR 17,632d | Zbl 0070.16803
,[So] On the Gauss map of an area-minimizing hypersurface, J. Diff. Geom., 24 (1984), 221-232. | MR 86e:49079 | Zbl 0548.53051
,