Dans la première section de cet article nous caractérisons les cônes convexes fermés de de l’algèbre de Lie , qui sont invariants sous l’action d’un groupe compact maximal du groupe adjoint et qui sont contrôlables dans le groupe , c’est-à-dire tels que l’image exponentielle de engendre le groupe tout entier (Theorem 1.3). Dans la section 2 nous développons des instruments algébriques concernant le système de racines réelles relatives à une sous-algèbre de Cartan compacte plongée et les cônes invariants dans les algèbres de Lie semi-simples. Dans la section 3 nous utilisons ces instruments, en combinaison avec des résultats de la section 1, pour caractériser les cônes invariants dans une algèbres de Lie semi-simples qui sont contrôlables dans le groupe simplement connexe associé. Si est simple nous obtenons une caractérisation des cônes invariants qui sont globaux, c’est-à-dire pour lesquels il existe un semi-groupe fermé avec .
In the first section of this paper we give a characterization of those closed convex cones (wedges) in the Lie algebra which are invariant under the maximal compact subgroup of the adjoint group and which are controllable in the associated simply connected Lie group , i.e., for which the subsemigroup generated by the exponential image of agrees with the whole group (Theorem 13). In Section 2 we develop some algebraic tools concerning real root decompositions with respect to compactly embedded Cartan algebras and invariant cones in semisimple Lie algebras. In Section 3 these tools, combined with the results from Section 1, yield a characterization of those invariant cones in a semisimple Lie algebra which are controllable in the associated simply connected Lie group . If is simple, we even get a characterization of those invariant wedges which are global in , i.e., for which there exists a closed subsemigroup having as its tangent wedge .
@article{AIF_1990__40_3_493_0, author = {Neeb, Karl-Hermann}, title = {Globality in semisimple Lie groups}, journal = {Annales de l'Institut Fourier}, volume = {40}, year = {1990}, pages = {493-536}, doi = {10.5802/aif.1222}, mrnumber = {92h:17005}, zbl = {0703.17003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1990__40_3_493_0} }
Neeb, Karl-Hermann. Globality in semisimple Lie groups. Annales de l'Institut Fourier, Tome 40 (1990) pp. 493-536. doi : 10.5802/aif.1222. http://gdmltest.u-ga.fr/item/AIF_1990__40_3_493_0/
[BD] Representations of Compact Lie Groups, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1985. | Zbl 0581.22009
and ,[Fa1] Algèbres de Volterra et Transformation de Laplace Sphérique sur certains espaces symétriques ordonnés, Symposia Math., 29 (1989), 183-196. | MR 90e:43006 | Zbl 0656.43003
,[Fa2] Algèbres de Jordan et Cônes symétriques, Notes d'un cours de l'Ecole d'Eté CIMPA-Universités de Poitiers, 22 Août-16 Septembre 1988.
,[Fo] Harmonic Analysis in Phase Space, Princeton University Press, Princeton, New Jersey, 1989. | MR 92k:22017 | Zbl 0682.43001
,[HawE] The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, 1973. | MR 54 #12154 | Zbl 0265.53054
and ,[HarC1] Representations of semi-simple Lie groups, IV, Amer. J. Math., 77 (1955), 743-777. | MR 17,282c | Zbl 0066.35603
,[HarC2] Representations of semi-simple Lie groups, VI, Amer. J. Math., 78 (1956), 564-628. | Zbl 0072.01702
,[He] Differential Geometry, Lie Groups, and Symmetric Spaces, Acad. Press. London, 1978. | Zbl 0451.53038
,[HiHoL] Lie groups, Convex cones, and Semigroups, Oxford University Press, 1989. | MR 91k:22020 | Zbl 0701.22001
, , ,[HiLPy] The Analytic and Topological Theory of Semigroups - Trends and Developments, to appear.
, , , Eds.,[Ho] Lie algebras with subalgebras with codimension one, Illinois J. Math., 9 (1965), 636-643. | MR 31 #5931 | Zbl 0142.27601
,[Hu] Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1972. | MR 48 #2197 | Zbl 0254.17004
,[L] Maximal subsemigroups of Lie groups that are total, Proceedings of the Edinburgh Math. Soc., 87 (1987), 497-501. | MR 89c:22042 | Zbl 0649.22004
,[M] Compactifications of symmetric spaces, II, The Cartan domains, Amer. J. Math., 86 (1964), 358-378. | MR 28 #5146 | Zbl 0156.03202
,[N1] The duality between subsemigroups of Lie groups and monotone functions, Transactions of the Amer. Math Soc., to appear. | Zbl 0747.22006
,[N2] Semigroups in the Universal Covering Group of SL(2), Semigroup Forum, to appear. | Zbl 0736.22005
,[O1] Invariant cones in Lie algebras, Lie semigroups, and the holomorphic discrete series, Funct. Anal. and Appl., 15 (1982), 275-285. | Zbl 0503.22011
,[O2] Invariant orderings in simple Lie groups. The solution to E.B. Vinberg's problem, Funct. Anal. and Appl., 16 (1982), 311-313. | MR 85a:32039 | Zbl 0576.32040
,[Pa] Determination of invariant convex cones in simple Lie algebras, Arkiv för Mat., 21 (1984), 217-228. | MR 86h:22031 | Zbl 0526.22016
,[S] Invariante Kegel in Liealgebren, Mitt. aus dem mathematischen Sem. Gieβen, Heft 188, 1988. | MR 90b:17005 | Zbl 0657.17003
,[V] Invariant cones and orderings in Lie groups, Funct. Anal. and Appl., 14 (1980), 1-13. | MR 82c:32034 | Zbl 0452.22014
,