On considère les morphismes harmoniques comme généralisation naturelle des fonctions analaytiques qu’on rencontre dans la théorie des surfaces de Riemann. On montre que chaque variété fermée et analytique à 3 dimensions qui supporte un morphisme harmonique à valeurs dans une surface de Riemann est un espace fibré de Seifert. On étudie les morphismes harmoniques définies sur une variété fermée à 4 dimensions et à valeurs dans une variété à 3 dimensions. Ceux-ci déterminent une action du cercle sur qui est localement différentiable, peut-être avec des points fixes. Par conséquent la topologie de est limitée. Dans chaque cas, un morphisme harmonique défini sur une variété fermée à dimensions et à valeurs dans une variété à dimensions (, avec , analytiques dans le cas où ) détermine une action du cercle sur qui est localement différentiable.
Harmonic morphisms are considered as a natural generalization of the analytic functions of Riemann surface theory. It is shown that any closed analytic 3-manifold supporting a non-constant harmonic morphism into a Riemann surface must be a Seifert fibre space. Harmonic morphisms from a closed 4-manifold to a 3-manifold are studied. These determine a locally smooth circle action on with possible fixed points. This restricts the topology of . In all cases, a harmonic morphism from a closed -dimensional manifold to an -dimensional manifold (n, with , analytic in the case determines a locally smooth circle action on .
@article{AIF_1990__40_1_177_0, author = {Baird, Paul}, title = {Harmonic morphisms and circle actions on 3- and 4-manifolds}, journal = {Annales de l'Institut Fourier}, volume = {40}, year = {1990}, pages = {177-212}, doi = {10.5802/aif.1210}, mrnumber = {91e:57025}, zbl = {0676.58023}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1990__40_1_177_0} }
Baird, Paul. Harmonic morphisms and circle actions on 3- and 4-manifolds. Annales de l'Institut Fourier, Tome 40 (1990) pp. 177-212. doi : 10.5802/aif.1210. http://gdmltest.u-ga.fr/item/AIF_1990__40_1_177_0/
[1] Harmonic maps with symmetry, harmonic morphisms and deformations of metrics, Research Notes in Math., 87, Pitman, (1983). | MR 85i:58038 | Zbl 0515.58010
,[2] Harmonic morphisms onto Riemann surfaces and generalized analytic functions, Ann. Inst. Fourier, Grenoble, 37-1 (1987), 135-173. | Numdam | MR 88h:31009 | Zbl 0608.58015
,[3] A conservation law for harmonic maps, Geometry Symp. Utrecht (1980), Springer Notes, 894 (1981), 1-25. | MR 83i:58031 | Zbl 0485.58008
and ,[4] Bernstein theorems for harmonic morphisms from R3 and S3, Math. Ann. 280 (1988), 579-603. | MR 90e:58027 | Zbl 0621.58011
and ,[5] Harmonic morphisms and conformal foliations of 3-dimensional space forms, preprint. | Zbl 0744.53013
and ,[6] Brownian motion and generalized analytic and inner functions, Ann. Inst. Fourier, Grenoble, 29-1 (1979), 207-228. | Numdam | MR 81b:30088 | Zbl 0386.30029
, and ,[7] Introduction to Compact Transformation Groups, Academic Press, (1972). | MR 54 #1265 | Zbl 0246.57017
,[8] Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay, (1960). | MR 22 #9749 | Zbl 0098.06903
,[9] Compactifications of harmonic spaces, Nagoya Math. J., 25 (1965), 1-57. | MR 30 #4960 | Zbl 0138.36701
and ,[10] Regularity of certain harmonic maps, Global Riemannian Geometry, Durham (1982), E. Horwood (1984), 137-147. | Zbl 0616.58012
,[11] A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1-68. | MR 82b:58033 | Zbl 0401.58003
and ,[12] Selected topics in harmonic maps, C.B.M.S. Regional Conference Series 50, A.M.S. (1983). | MR 85g:58030 | Zbl 0515.58011
and ,[13] Harmonic maps between spheres and ellipsoids, preprint, I.H.E.S., (1988).
and ,[14] Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. | MR 29 #1603 | Zbl 0122.40102
and ,[15] Periodic flows on 3-manifolds, Annals of Math., 95 (1972), 68-82. | MR 44 #5981 | Zbl 0231.58009
,[16] Foliations with all leaves compact, Ann. Inst. Fourier, Grenoble 26-1 (1976), 265-282. | Numdam | MR 54 #8664 | Zbl 0313.57017
,[17] Pointwise periodic homeomorphisms, Proc. London Math. Soc., (3) 42 (1981), 415-460. | MR 83e:57011 | Zbl 0491.57006
,[18] Classification of circle actions on 4-manifolds, Trans. Amer. Math. Soc., 242 (1978), 377-390. | MR 81e:57036 | Zbl 0362.57015
,[19] Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier, Grenoble, 28-2 (1978), 107-144. | Numdam | MR 80h:58023 | Zbl 0339.53026
,[20] Lectures on algebraic topology, Benjamin, 1966.
,[21] Embeddings of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier, Grenoble, 12 (1962), 415-571. | Numdam
and ,[22] The geometry of the generalized Gauss map, Memoirs Amer. Math. Soc., vol 28, n° 236 (1980). | MR 82b:53012 | Zbl 0469.53004
and ,[23] A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215-229. | MR 80k:58045 | Zbl 0421.31006
,[24] Uber Eine Particuläre Lösing der Partiellen Differential Gleichung ∂2v/∂x2 + ∂2v/∂y2 + ∂2v/∂z2 = 0, Crelle Journal für die reine und angewandte Mathematik, 36 (1847), 113-134.
,[25] Microbundles I, Topology, Vol. 3 Suppl. 1, (1964), 53-80. | MR 28 #4553b | Zbl 0124.38404
,[26] Singular Points of Complex Hypersurfaces, Annals of Math. Studies, 61, P.U.P., 1968. | MR 39 #969 | Zbl 0184.48405
,[27] On the 3-dimensional Brieskorn manifolds M(p, q, r), Knots, Groups and 3-manifolds, ed. L.P. Neuwith, Annals of Math. Studies, 84, P.U.P. (1975), 175-225. | MR 54 #6169 | Zbl 0305.57003
,[28] Non linear circle actions on the 4-sphere and twisting spun knots, Topology, 17 (1978), 291-296. | MR 81h:57028 | Zbl 0403.57006
,[29] Harmonic maps from deformed spheres to spheres, preprint. | Zbl 0685.58014
,[30] Knots and Links, Mathematics Lecture Series 7, Publish or Perish, (1976). | MR 58 #24236 | Zbl 0339.55004
,[31] The geometries of 3-manifolds, Bull. London Math. Soc., 15 (1983). | MR 84m:57009 | Zbl 0561.57001
,[32] Topics in Complex Function Theory I, Wiley, 1969. | Zbl 0184.11201
,[33] Harmonic mappings of spheres, Amer. J. Math., 97 (1975), 364-385. | MR 52 #11949 | Zbl 0321.57020
,[34] The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1951. | MR 12,522b | Zbl 0054.07103
,[35] Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982), 357-381. | Zbl 0496.57005
,[36] Conformal foliations, Kodai Math. J., 2 (1979), 26-37. | MR 80g:57038 | Zbl 0402.57014
,[37] Harmonic morphisms, foliations and Gauss maps, Complex Differential Geometry, ed. Y.T. Siu, Contemporary Mathematics, 49, A.M.S., (1986), 145-183. | MR 87i:58045 | Zbl 0592.53020
,[38] Quadratic forms between spheres and the non-existence of sums of squares formulae, Math. Proc. Camb. Phil. Soc., 100 (1986), 493-504. | Zbl 0613.55009
,