Pour un feuilletage riemannien, on utilise la topologie de la suite spectrale correspondante pour caractériser l’existence d’une métrique “bundle-like” telle que les feuilles sont des sous-variétés minimales. Quand la codimension est , on prouve une caractérisation cohomologique simple de cette propriété géométrique.
For a Riemannian foliation, the topology of the corresponding spectral sequence is used to characterize the existence of a bundle-like metric such that the leaves are minimal submanifolds. When the codimension is , a simple characterization of this geometrical property is proved.
@article{AIF_1990__40_1_163_0, author = {Lopez, Jes\'us A. Alvarez}, title = {On riemannian foliations with minimal leaves}, journal = {Annales de l'Institut Fourier}, volume = {40}, year = {1990}, pages = {163-176}, doi = {10.5802/aif.1209}, mrnumber = {92a:53038}, zbl = {0688.57017}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1990__40_1_163_0} }
Lopez, Jesús A. Alvarez. On riemannian foliations with minimal leaves. Annales de l'Institut Fourier, Tome 40 (1990) pp. 163-176. doi : 10.5802/aif.1209. http://gdmltest.u-ga.fr/item/AIF_1990__40_1_163_0/
[1] A finiteness theorem for the spectral sequence of a Riemannian foliation, Illinois J. of Math., 33 (1989), 79-92. | MR 89m:53050 | Zbl 0644.57014
,[2] Duality in the spectral sequence of Riemannian foliations, American J. of Math., 111 (1989), 905-926. | MR 90k:58004 | Zbl 0685.57017
,[3] A decomposition theorem for the spectral sequence of Lie foliations, to appear. | Zbl 0756.57016
,[4] Differential Forms in Algebraic Topology, GTM N° 82, Springer-Verlag, 1982. | MR 83i:57016 | Zbl 0496.55001
, ,[5] Flots riemanniens, Astérisque, 116 (1984), 31-52. | MR 86m:58125a | Zbl 0548.58033
,[6] Feuilletages riemanniens à croissance polynomiale, Comm. Math. Helv., 63 (1988), 1-20. | MR 89a:57033 | Zbl 0661.53022
,[7] Décomposition de Hodge basique pour un feuilletage riemannien, Ann. Inst. Fourier, 36-3 (1986), 207-227. | Numdam | MR 87m:57029 | Zbl 0586.57015
, ,[8] La cohomologie basique d'un feuilletage riemannien est de dimension finie, Math. Z., 188 (1985), 593-599. | Zbl 0536.57013
, , ,[9] Riemannian Foliations : Examples and Problems, Appendix E of Riemannian Foliations (by P. Molino), Birkhäuser, 1988, 297-314.
,[10] Connections, curvature and cohomology, Academic Press, 1973-1975.
, , ,[11] Some remarks on foliations with minimal leaves, J. Diff. Geom., 15 (1980), 269-284. | MR 82j:57027 | Zbl 0444.57016
,[12] Pseudogroups of local isometries, Res. Notes in Math., 131 (1985), 174-197. | MR 88i:58174 | Zbl 0656.58042
,[13] Cohomologies transversales des feuilletages riemanniens, Sém. Sud-Rhod., VII/2, Travaux en Cours, Hermann, 1987. | Zbl 0666.57022
,[14] Duality for Riemannian foliations, Proc. Symp. Pure Math., 40/1 (1983), 609-618. | MR 85e:57030 | Zbl 0523.57019
, ,[15] Foliations and metrics, Progr. in Math., 32 (1983), 103-152. | MR 85a:57017 | Zbl 0542.53022
, ,[16] Las cohomologías diferenciable, continua y discreta de una variedad foliada, Publ. do Dpto. de Xeometría e Topoloxía n° 60, Santiago de Compostela, 1983.
,[17] Cohomology of Lie foliations, Res. Notes in Math., 131 (1985), 211-214. | MR 88f:57045 | Zbl 0646.57016
,[18] Géométrie globale des feuilletages riemanniens, Proc. Kon. Ned. Akad., A1, 85 (1982), 45-76. | MR 84j:53043 | Zbl 0516.57016
,[19] Deux remarques sur les flots riemanniens, Manuscripta Math., 51 (1985), 145-161. | MR 86h:53035 | Zbl 0585.53026
, ,[20] Foliated manifolds with bundle-like metrics, Ann. Math., 69 (1959), 119-132. | MR 21 #6004 | Zbl 0122.16604
,[21] Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compactes, Comm. Math. Helv., 54 (1979), 224-239. | MR 80m:57021 | Zbl 0409.57026
,[22] A finiteness theorem for foliated manifolds, J. Math. Soc. Japan, Vol. 30, N° 4 (1978), 687-696. | MR 80a:57014 | Zbl 0398.57012
,[23] Sur la suite spectrale d'un feuilletage riemannien, Lille, 1986. | Zbl 0673.53021
,[24] A cohomological characterization of foliations consisting of minimal surfaces, Com. Math. Helv., 54 (1979), 218-223. | MR 80m:57022 | Zbl 0409.57025
,