New examples of non-locally embeddable CR structures (with no non-constant CR distributions)
Rosay, Jean-Pierre
Annales de l'Institut Fourier, Tome 39 (1989), p. 811-823 / Harvested from Numdam

De nouveaux exemples de structures CR non réalisables sont donnés. Ils sont basés sur une construction simple qui consiste à recoller deux structures plongées. Ces exemples semblent améliorer en partie des exemples anciens de Nirenberg, et Jacobowitz et Trèves, mais l’avantage principal en est peut-être le caractère transparent, qui en rend l’étude facile.

We construct examples of non-locally embeddable CR structures. These examples may show some improvement on previous examples by Nirenberg, and Jacobowitz and Trèves. They are based on a simple construction which consists in gluing two embedded structures. And (this is our main point) we believe that these examples are very transparent, therefore easy to work with.

@article{AIF_1989__39_3_811_0,
     author = {Rosay, Jean-Pierre},
     title = {New examples of non-locally embeddable $CR$ structures (with no non-constant $CR$ distributions)},
     journal = {Annales de l'Institut Fourier},
     volume = {39},
     year = {1989},
     pages = {811-823},
     doi = {10.5802/aif.1189},
     mrnumber = {91f:32020},
     zbl = {0674.32008},
     mrnumber = {1030851},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1989__39_3_811_0}
}
Rosay, Jean-Pierre. New examples of non-locally embeddable $CR$ structures (with no non-constant $CR$ distributions). Annales de l'Institut Fourier, Tome 39 (1989) pp. 811-823. doi : 10.5802/aif.1189. http://gdmltest.u-ga.fr/item/AIF_1989__39_3_811_0/

[1] T. Akahori, A new approach to the local embedding theorem for CR structures for n ≥ 4, Memoirs of the AMS no. 336, Providence, RI 1987. | Zbl 0628.32025

[2] D. Hill, What is the notion of a complex manifold with boundary, Prospect in Algebraic Analysis [M. Saito 60th birthday vol.].

[3] H. Jacobowitz, The canonical bundle and realizable CR hypersurfaces, Pacific J. Math., 127 (1987), 91-101. | MR 88e:32027 | Zbl 0583.32050

[4] H. Jacobowitz, F. Trèves, Nonrealizable CR structures, Inventions Math., 66 (1982), 321-249. | Zbl 0487.32015

[5] M. Kuranishi, Strongly pseudoconvex CR structures over small balls, Ann. of Math., I 115 (1982), 451-500, II 116 (1982), 1-64, III 116 (1982), 249-330. | MR 84h:32023a | Zbl 0576.32033

[6] G. Lupacciolu A theorem on holomorphic extension for CR functions, Pacific J. Math., 124 (1986), 177-191. | MR 87k:32026 | Zbl 0597.32014

[7] L. Nirenberg, Lectures on linear partial differential equations, Conference Board of Math. Sc., Regional Conference Series in mathematics No. 17, AMS, 1973. | MR 56 #9048 | Zbl 0267.35001

[8] L. Nirenberg, On a question of Hans Lewy, Russian Math. Surveys, 29, (1974), 251-262. | MR 58 #11823 | Zbl 0305.35017

[9] J.P. Rosay, E.L. Stout, Rado's theorem for CR functions, to appear in Proc. AMS. | Zbl 0674.32007

[10] M.C. Shaw, Hypoellipticity of a system of complex vector fiels, Duke Math. J., 50 no. 3 (1983), 713-728. | MR 85e:35028 | Zbl 0542.35021

[11] F. Trèves, Approximation and representation of functions and distributions annhilated by a system of complex vector fields, Ecole polytechnique (1981). | Zbl 0515.58030

[12] F. Trèves, Introduction to pseudodifferential and Fourier Integral operators, Plenum (1980). | Zbl 0453.47027

[13] S. Webster, On the proof of Kuranishi's embedding theorem, (preprint). | Numdam | Zbl 0679.32020

[14] D. Catlin, A Newlander Nirenberg theorem for manifolds with boundary, Mich. Math. J., 35 (1988), 233-240. | MR 89j:32026 | Zbl 0679.53029