Algorithme de calcul du polynôme de Bernstein : Cas non dégénéré
Briançon, Joël ; Granger, Michel ; Maisonobe, Philippe ; Miniconi, M.
Annales de l'Institut Fourier, Tome 39 (1989), p. 553-610 / Harvested from Numdam

Nous commençons par indiquer comment la connaissance du degré d’un opérateur différentiel, unitaire en s et annulant f s , permet de donner un algorithme de calcul du polynôme de Bernstein d’un germe f de fonction analytique à singularité isolée.

Nous étudions alors le cas d’une singularité non dégénérée par rapport à son polygôme de Newton; nous donnons un algorithme pour calculer le polynôme de Bernstein de ces singularités et l’équation fonctionnelle associée. Notre méthode utilise une filtration proche de la filtration de Newton et un théorème de division adaptée. Les racines du polynôme de Bernstein sont alors données naturellement comme des poids par rapport a cette filtration.

Nous donnons des exemples de calcul et déterminons le polynôme de Bernstein générique d’une singularité semi-quasi-homogène.

We begin by showing that, given the degree of a differential operator unitary in s and nullifying f s , an algorithm computing the Bernstein’s polynomial of a germ f of an analytical function with isolated singularity can be derived.

We then study the case of a non degenerated singularity with respect to its Newton boundary; we give an algorithm to compute the Bernstein’s polynomial of these singularities as well as the associated functional equation. Our method uses a filtration close to Newton’s and an appropriata division theorem. The roots of the Bernstein’s polynomial are then given naturally as weights with respect to that filtration.

We give some examples of computation and we find the generic Bernstein’s polynomial of a semi-quasi-homogeneous singularity.

@article{AIF_1989__39_3_553_0,
     author = {Brian\c con, Jo\"el and Granger, Michel and Maisonobe, Philippe and Miniconi, M.},
     title = {Algorithme de calcul du polyn\^ome de Bernstein : Cas non d\'eg\'en\'er\'e},
     journal = {Annales de l'Institut Fourier},
     volume = {39},
     year = {1989},
     pages = {553-610},
     doi = {10.5802/aif.1177},
     mrnumber = {91k:32040},
     zbl = {0675.32008},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_1989__39_3_553_0}
}
Briançon, Joël; Granger, Michel; Maisonobe, Philippe; Miniconi, M. Algorithme de calcul du polynôme de Bernstein : Cas non dégénéré. Annales de l'Institut Fourier, Tome 39 (1989) pp. 553-610. doi : 10.5802/aif.1177. http://gdmltest.u-ga.fr/item/AIF_1989__39_3_553_0/

[1] I.N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Fonct. Anal. and Applic., vol.6 (1972). | MR 47 #9269 | Zbl 0282.46038

[2] J.E. Bjork, Rings of Differential Operators, North-Holland Math. Library, 1979. | MR 82g:32013 | Zbl 0499.13009

[3] J. Briançon, Description de Hilbnℂ&{x, y}, Inv. Math., 41 (1977). | MR 56 #15637 | Zbl 0353.14004

[4] J. Briançon, M. Granger, Ph. Maisonobe, Sur le polynôme de Bernstein des singularités semi-quasi homogènes, Prépub. n° 138 de l'Univ. de Nice, (1986).

[5] J. Briançon, M. Granger, Ph. Maisonobe, M. Miniconi, Polynôme de Bernstein d'une singularité non dégénérée par rapport à son polyèdre de Newton, Prépub. n° 155 de l'Univ. de Nice, (1987).

[6] J. Briançon, H. Skoda, Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de ℂn, C.R. Acad. Sci., Paris, 278 (1974). | MR 49 #5394 | Zbl 0307.32007

[7] P. Cassou-Noguès, Racines de polynômes de Bernstein, Ann. Inst. Fourier, Grenoble, 36-4 (1986), 1-30. | Numdam | MR 88c:32012 | Zbl 0597.32004

[8] P. Cassou-Noguès, Etude du comportement du polynôme de Bernstein lors d'une déformation à ̌ constant de xa + yb avec (a, b) = 1, Comp. Math., 63 (1987). | Numdam | MR 89k:32042 | Zbl 0624.32006

[9] P. Cassou-Noguès, Polynôme de Bernstein générique des singularités semi-quasi homogènes, Prépub. Bordeaux, (1986).

[10] A. Galligo, Algorithme de calcul de bases standard, Prépub. Univ. Nice, 9 (1983).

[11] M. Kashiwara, B-function and holonomic system, Inv. Math., 38 (1976). | MR 55 #3309 | Zbl 0354.35082

[12] M. Kato, An estimate of the roots of b-functions by Newton polyhedra, Proc. Japan Acad, 57. Ser. A, (1981). | MR 83i:32016 | Zbl 0535.35002

[13] M. Kato, The b-function of ̌-constant deformation of x7 + y5, Bull. Coll. of Sc. Univ. of Ryukyu, 32 (1981). | MR 83b:32007 | Zbl 0496.32016

[14] M. Kato, The b-function of ̌-constant defromation of x9 + y4, Bull. Coll. of Sc. Univ. of Ryukyu, 32 (1982). | Zbl 0505.32011

[15] A.G. Kouchnirenko. Polyèdres de Newton et nombres de Milnor, Inv. Math., 32 (1976), 1-31. | MR 54 #7454 | Zbl 0328.32007

[16] M. Lejeune, B Teissier, Clôtures intégrales des idéaux et équisingularité, Séminaire Lejeune-Teissier, Prépub. Univ. de Grenoble, (1974).

[17] J. Lipman, B. Teissier, Pseudo rational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michig. Math. Journ., vol 28 (1981). | MR 82f:14004 | Zbl 0464.13005

[18] F. Loeser, Fonctions d'Igusa p-adiques et polynômes de Bernstein, Amer. Journ. of Math., 109 (1987), 1-22.

[19] B. Malgrange, Le polynôme de Bernstein d'une singularité isolée, in Fourier Integral Operators and partial Differential Equations, Coll. Intern. de Nice, (1974), Lectures Notes in Math., vol. 459, (1975). | Zbl 0308.32007

[20] B. Malgrange, Polynôme de Bernstein-Sato et cohomologie évanescente, Analyse et Topologie sur les Espaces Singuliers, Coll. Luminy (1981), Astérisque 101 et 102, Soc. Math. France. | Zbl 0528.32007

[21] F. Pham, Singularités des systèmes différentiels de Gauβ-Manin, Prog. in Math. 2, Birkhäuser, 1979. | MR 81h:32015 | Zbl 0524.32015

[22] K. Saito, Quasi-homogene isolierte Singularitäten von Hyperflächen, Inv. Math., 14 (1971). | MR 45 #3767 | Zbl 0224.32011

[23] K. Saito, On the structure of Brieskorn lattices, Prépub. RIMS, Kyoto Univ., 608 (1988).

[24] K. Saito, Exponents and Newton polyhedra of isolated hypersurface singularities, Prépub., Inst. Fourier, Grenoble, (1983).

[25] G. Scheja, U. Storch, Uber Spurfunktionen bei vollständiger Durchschnitten, Journal für reine und angewandte Mathematik, 278/279 (1975). | MR 52 #13867 | Zbl 0316.13003

[26] A.N. Varchenko, Asymptotic Hodge structure in the vanishing cohomology, Math USSR Izvestija, vol. 18, n° 3, (1982). | Zbl 0489.14003

[27] A.N. Varchenko, The Gauβ-Manin connection of isolated singular points and Bernstein polynomial, Bull. Soc. Math. Fr., 2° série, 104 (1980). | MR 83e:32008 | Zbl 0434.32008

[28] A.N. Varchenko, A.G. Hovansky, Asymptotic behavior of integrals on vanishing cycles and Newton polyhedron, Dan. SSSR, 283-3 (1985).

[29] T. Yano, On the theory of b-functions, Publ. RIMS, Kyoto Univ, 14 (1978). | MR 80h:32026 | Zbl 0389.32005