Il est démontré que la topologie fine de type définie à l’aide d’un critère de Wiener est la moins fine topologie rendant continues toutes les sursolutions de l’équation -harmonique
Les limites fines d’applications quasi-régulières et de type BLD sont aussi étudiées.
It is shown that the -fine topology defined via a Wiener criterion is the coarsest topology making all supersolutions to the -Laplace equation
continuous. Fine limits of quasiregular and BLD mappings are also studied.
@article{AIF_1989__39_2_293_0, author = {Heinonen, Juha and Kilpel\"ainen, Terro and Martio, Olli}, title = {Fine topology and quasilinear elliptic equations}, journal = {Annales de l'Institut Fourier}, volume = {39}, year = {1989}, pages = {293-318}, doi = {10.5802/aif.1168}, mrnumber = {91b:31015}, zbl = {0659.35038}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1989__39_2_293_0} }
Heinonen, Juha; Kilpeläinen, Terro; Martio, Olli. Fine topology and quasilinear elliptic equations. Annales de l'Institut Fourier, Tome 39 (1989) pp. 293-318. doi : 10.5802/aif.1168. http://gdmltest.u-ga.fr/item/AIF_1989__39_2_293_0/
[AH] Inclusion relations among fine topologies in non-linear potential theory, Indiana Univ. Math. J., 33 (1984), 117-126. | MR 85c:31011 | Zbl 0545.31011
and ,[AL] Fine and quasi connectedness in nonlinear potential theory, Ann. Inst. Fourier, Grenoble, 35-1 (1985), 57-73. | Numdam | MR 86h:31009 | Zbl 0545.31012
and ,[AM] Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J., 22 (1972), 169-197. | MR 47 #5272 | Zbl 0244.31012
and ,[B] On topologies and boundaries in potential theory, Lecture Notes in Math., 175, Springer-Verlag, 1971. | MR 43 #7654 | Zbl 0222.31014
,[D] Classical potential theory and its probabilistic counterpart, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984. | MR 85k:31001 | Zbl 0549.31001
,[F1] The quasi topology associated with a countable subadditive set function, Ann. Inst. Fourier, Grenoble, 21-1, (1971), 123-169. | Numdam | Zbl 0197.19401
,[F2] Connexion en topologie fine et balayage des mesures, Ann. Inst. Fourier, Grenoble, 21-3 (1971), 227-244. | Numdam | MR 49 #9241 | Zbl 0208.13802
,[F3] Asymptotic paths for subharmonic functions and polygonal connectedness of fine domains, Séminaire de Théorie du Potentiel, Paris, n° 5, Lecture Notes in Math., 814, Springer-Verlag, 1980, pp. 97-116. | MR 82b:31006 | Zbl 0445.31003
,[F4] Value distribution of harmonic and finely harmonic morphisms and applications in complex analysis, Ann. Acad. Sci. Fenn. Ser. A I Math., 11 (1986), 111-135. | MR 87e:30037 | Zbl 0607.31002
,[GLM1] Conformally invariant variational integrals, Trans. Amer. Math. Soc., 277 (1983), 43-73. | MR 84f:30030 | Zbl 0518.30024
, and ,[GLM2] Note on the PWB-method in the non-linear case, Pacific J. Math., 125 (1986), 381-395. | MR 88a:31014 | Zbl 0633.31004
, and ,[HW] Thin sets in nonlinear potential theory, Ann. Inst. Fourier, Grenoble, 33-4 (1983), 161-187. | Numdam | MR 85f:31015 | Zbl 0508.31008
and ,[HK1] A-superharmonic functions and supersolutions of degenerate elliptic equations, Ark. Mat., 26 (1988), 87-105. | MR 89k:35079 | Zbl 0652.31006
and ,[HK2] Polar sets for supersolutions of degenerate elliptic equations, Math. Scand. (to appear). | Zbl 0706.31015
and ,[HK3] On the Wiener criterion and quasilinear obstacle problems, Trans. Amer. Math. Soc., 310 (1988), 239-255. | MR 89m:35091 | Zbl 0711.35052
and ,[K] Potential theory for supersolutions of degenerate elliptic equations (to appear). | Zbl 0688.31005
,[L] On the definition and properties of p-superharmonic functions, J. Reine Angew. Math., 365 (1986), 67-79. | MR 87e:31011 | Zbl 0572.31004
,[LM] Two theorems of N. Wiener for solutions of quasilinear elliptic equations, Acta Math., 155 (1985), 153-171. | MR 87g:35074 | Zbl 0607.35042
and ,[LSW] Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (III), 17 (1963), 43-77. | Numdam | MR 28 #4228 | Zbl 0116.30302
, and ,[LMZ] Fine topology methods in real analysis and potential theory, Lecture Notes in Math., 1189, Springer-Verlag, 1986. | MR 89b:31001 | Zbl 0607.31001
, and ,[MRV1] Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 448 (1969), 1-40. | MR 41 #3756 | Zbl 0189.09204
, and ,[MRV2] Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math., 464 (1970), 1-13. | Zbl 0197.05702
, and ,[MS] Density conditions in the n-capacity, Indiana Univ. Math. J., 26 (1977), 761-776. | MR 57 #16582 | Zbl 0365.30014
and ,[MV] Elliptic equations and maps of bounded length distortion, Math. Ann., 282, (1988), 423-443. | MR 89m:35062 | Zbl 0632.35021
and ,[M] Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166. | MR 51 #3477 | Zbl 0334.31004
,[R] The concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Zh., 10 (1969), 1109-1138. (Russian). | MR 43 #2234 | Zbl 0199.20701
,