On discute le problème de la caractérisation des algèbres de Lie graduées qui peuvent être réalisés comme des algèbres de Lie homotopiques d’espace de type . Les résultats principaux sont exprimés à l’aide de la notion de variété des constantes structurales. On démontre aussi quelques critères pour des algèbres concrètes.
The problem of the characterization of graded Lie algebras which admit a realization as the homotopy Lie algebra of a space of type is discussed. The central results are formulated in terms of varieties of structure constants, several criterions for concrete algebras are also deduced.
@article{AIF_1989__39_1_193_0, author = {Markl, Martin}, title = {On the rational homotopy Lie algebra of spaces with finite dimensional rational cohomology and homotopy}, journal = {Annales de l'Institut Fourier}, volume = {39}, year = {1989}, pages = {193-206}, doi = {10.5802/aif.1163}, mrnumber = {90h:55018}, zbl = {0657.55016}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1989__39_1_193_0} }
Markl, Martin. On the rational homotopy Lie algebra of spaces with finite dimensional rational cohomology and homotopy. Annales de l'Institut Fourier, Tome 39 (1989) pp. 193-206. doi : 10.5802/aif.1163. http://gdmltest.u-ga.fr/item/AIF_1989__39_1_193_0/
[1] Linear algebraic groups, W.A. Benjamin, New-York, 1969. | MR 40 #4273 | Zbl 0186.33201
,[2] An arithmetic characterization of the rational homotopy groups of certain spaces, Inv. Math., 53 (1979), 117-133. | MR 81f:55006b | Zbl 0396.55010
, ,[3] Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc., 230 (1977), 173-199. | MR 57 #1493 | Zbl 0364.55014
,[4] Spaces whose rational homology and ѱ-homotopy are both finite dimensional, Astérisque, 113-114 (1984), 198-205. | MR 86a:55015 | Zbl 0546.55015
,[5] The structure of π*(ΩS), Astérisque, 113-114, 109-117. | MR 86b:55009 | Zbl 0546.55014
,[6] Algebraic geometry, Springer, 1977. | MR 57 #3116 | Zbl 0367.14001
,[7] Dénombrement de types d'homotopie rationnelle, C.R. Acad. Paris, Sér. A, 287 (1978), 109-112. | MR 80b:55009 | Zbl 0382.55005
, ,[8] Rational homotopy theory, Ann. Math., 90 (1969), 205-295. | MR 41 #2678 | Zbl 0191.53702
,[9] Commutative algebra, Vol. I, Princeton N.J., Van Nostrand, 1958.
, ,[10] Commutative algebra, Vol. II, Princeton N.J., Van Nostrand, 1960. | Zbl 0121.27801
, ,[11] Osnovy algebraicheskoj geometrii, Moskva, 1972. | Zbl 0258.14001
,[12] Homotopie rationnelle : Modèles de Chen, Quillen, Sullivan, Lecture Notes in Math. 1025, Springer, 1983. | MR 86b:55010 | Zbl 0539.55001
,