On construit une famille de fonctions continues sur l’intervalle qui n’a nulle part de dérivée unilatérale finie ou infinie utilisant les équations fonctionnelles de De Rham. Puis on démontre que, pour tout , il existe une dans toute classe lipschitzienne d’ordre inférieur à 1 tel que la mesure de l’ensemble de nœud points de est égale à .
We construct a family of continuous functions on the unit interval which have nowhere a unilateral derivative finite or infinite by using De Rham’s functional equations. Then we show that for any there exists an in any Lipschitz class of order less than one such that the set of knot points of has a measure .
@article{AIF_1988__38_2_43_0, author = {Hata, Masayoshi}, title = {On continuous functions with no unilateral derivatives}, journal = {Annales de l'Institut Fourier}, volume = {38}, year = {1988}, pages = {43-62}, doi = {10.5802/aif.1134}, mrnumber = {89i:26006}, zbl = {0641.26010}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1988__38_2_43_0} }
Hata, Masayoshi. On continuous functions with no unilateral derivatives. Annales de l'Institut Fourier, Tome 38 (1988) pp. 43-62. doi : 10.5802/aif.1134. http://gdmltest.u-ga.fr/item/AIF_1988__38_2_43_0/
[1] Über die Baire'sche Ketegorie gewisser Funktionenmengen, Studia Math., 3 (1931), 174-179. | JFM 57.0305.05 | Zbl 0003.29703
,[2] Mémoire sur les nombres dérivés des fonctions continues, J. Math. Pures Appl. (Ser. 7), 1 (1915), 105-240. | JFM 45.1285.01
,[3] On asymmetrical derivates of non-differentiable functions, Canad. J. Math., 20 (1968), 135-143. | MR 36 #3930 | Zbl 0194.08601
,[4] On the structure of self-similar sets, Japan J. Appl. Math., 2 (1985), 381-414. | MR 87g:58080 | Zbl 0608.28003
,[5] Über die Differenzierbarkeit stetiger Funktionen, Fund. Math., 21 (1933), 48-58. | JFM 59.0287.03 | Zbl 0007.40102
,[6] The Theory of Functions of a Real Variable, Toronto, 1951, pp. 172-181. | MR 13,216b | Zbl 0043.27901
,[7] Sur les fonctions non dérivables, Studia Math., 3 (1931), 92-94. | JFM 57.0305.04 | Zbl 0003.29702
,[8] A continuous function with no unilateral derivatives, Trans. Amer. Math. Soc., 44 (1938), 496-507. | JFM 64.0205.01 | MR 1501978 | Zbl 0019.40103
,[9] On continuous functions without a derivative, Fund. Math., 12 (1928), 244-253. | JFM 54.0275.02
,[10] Sur quelques courbes définies par des équations fonctionnelles, Rend. Sem. Mat. Torino, 16 (1957), 101-113. | MR 20 #1733 | Zbl 0079.16105
,[11] On the functions of Besicovitch in the space of continuous functions, Fund. Math., 19 (1932), 211-219. | JFM 58.0256.03 | Zbl 0005.39105
,[12] On functions without one-sided derivatives I, Proc. Benares Math. Soc., 3 (1941), 55-69. | MR 5,175a | Zbl 0063.07046
,[13] On functions without one-sided derivatives II, Proc. Benares Math. Soc., 4 (1942), 95-108. | MR 5,232e | Zbl 0063.07047
,[14] On the derivates of non-differentiable functions, Messenger of Math., 38 (1908), 65-69. | JFM 39.0470.04
,