Soit une fonction bornée sur ; on définit le multiplicateur avec un symbole (noté par ) par , . On étudie des conditions sur qui garantissent “l’inégalité interpolationnelle” (ici , est entre 0 et 1 et ne dépend pas de ). Cette inégalité exprime une sorte de régularité de sur . (Pour la plupart les multiplicateurs en question ne sont pas de type faible (1,1).) On utilise ces résultats pour démontrer qu’il y a bien des sous-ensembles de tels que chaque suite positive dans puisse être majorée par la suite pour une fonction continue dont le spectre soit inclus dans .
If is a bounded function on , the multiplier with symbol (denoted by is defined by , . We give some conditions on ensuring the “interpolation inequality” (here and is between 0 and 1). In most cases considered fails to have stronger -regularity properties (e.g. fails to be of weak type (1,1)). The results are applied to prove that for many sets every positive sequence in can be majorized by the sequence for some continuous funtion with spectrum in .
@article{AIF_1988__38_2_147_0, author = {Kislyakov, Serguei V.}, title = {Fourier coefficients of continuous functions and a class of multipliers}, journal = {Annales de l'Institut Fourier}, volume = {38}, year = {1988}, pages = {147-183}, doi = {10.5802/aif.1138}, mrnumber = {89j:42004}, zbl = {0607.42004}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1988__38_2_147_0} }
Kislyakov, Serguei V. Fourier coefficients of continuous functions and a class of multipliers. Annales de l'Institut Fourier, Tome 38 (1988) pp. 147-183. doi : 10.5802/aif.1138. http://gdmltest.u-ga.fr/item/AIF_1988__38_2_147_0/
[1] Bilinear forms on Hé and bounded bianalytic functions, Trans. Amer. Math. Soc., 286, N° 1 (1984), 313-337. | MR 86c:46060 | Zbl 0572.46048
,[2] Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83, N° 4 (1977), 569-645. | MR 56 #6264 | Zbl 0358.30023
, ,[3] Sur les coefficients de Fourier des fonctions continues, C. R. Acad. Sci. Paris, Sér. A, 285, N° 16 (1977), 1001-1003. | MR 58 #23319 | Zbl 0372.42004
, , ,[4] Weighted norm inequalities and related topics, North Holland, Amsterdam, New York, Oxford, 1985. | MR 87d:42023 | Zbl 0578.46046
, ,[5] Free interpolation in the space of uniformly convergent Taylor series, Lecture Notes Math., 864, Springer, Berlin, 1981, 171-213. | MR 83b:30032 | Zbl 0463.30001
( ), ,[6] On reflexive subspaces of the space C*A, Funktsionalnyi Anal. i ego Prilozhen., 13, No 1 (1979), 21-30 (Russian). | Zbl 0417.46057
,[7] Fourier coefficients of boundary values of functions analytic in the disc and in the bidisc, Trudy Matem. Inst. im. V. A. Steklova, 155 (1981), 77-94 (Russian). | MR 83a:42005 | Zbl 0506.42006
,[8] A substitute for the weak type (1, 1) inequality for multiple Riesz projections, Linear and Complex Analysis Problem Book, Lecture Notes Math., 1043, Springer, Berlin, 1984, 322-324.
,[9] Nouveaux théorèmes de Nikishin (suite et fin), Séminaire Maurey-Schwartz, 1973-1974, Exposé No V, École Polytechnique, Paris, 1974. | Numdam | Zbl 0296.46035
,[10] Trigonometric series with gaps, J. Math. Mech., 9, N° 2 (1960), 203-227. | MR 22 #6972 | Zbl 0091.05802
,[11] Maximal inequalities of weak type, Ann. Math., 84, N° 1 (1966), 157-173. | MR 35 #763 | Zbl 0186.20503
,[12] Einige Sätze und Fragestellungen über Fourier-Koeffizienten, Math. Z., 34, N° 4 (1932), 477-480. | Zbl 0003.25401
,[13] Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets, Ann. Inst. Fourier, 31, n° 1 (1981), 157-175. | Numdam | MR 82g:42014 | Zbl 0437.42011
, ,[14] Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. | MR 44 #7280 | Zbl 0207.13501
,[15] A strengthening of the Kolmogorov theorem on conjugate function and interpolation properties of uniformly convergent power series, Trudy Matem. Inst. im V. A. Steklova, 155 (1981), 7-40 (Russian). | MR 83b:42024 | Zbl 0468.30036
,[16] Trigonometric series, vol. I, II, Cambridge at the University Press, 1959. | Zbl 0085.05601
,