Nous montrons que l’opérateur maximal associé à la famille de rectangles en dont un des côtés est parallèle à pour quelques est borné sur , . Nous appliquons ce théorème pour obtenir une extension du théorème de multiplicateurs de Marcinkiewicz.
We show that the maximal operator associated to the family of rectangles in one of whose sides is parallel to for some j,k is bounded on , . We give an application of this theorem to obtain an extension of the Marcinkiewicz multiplier theorem.
@article{AIF_1988__38_1_157_0, author = {Carbery, Anthony}, title = {Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem}, journal = {Annales de l'Institut Fourier}, volume = {38}, year = {1988}, pages = {157-168}, doi = {10.5802/aif.1127}, mrnumber = {89h:42026}, zbl = {0607.42009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1988__38_1_157_0} }
Carbery, Anthony. Differentiation in lacunary directions and an extension of the Marcinkiewicz multiplier theorem. Annales de l'Institut Fourier, Tome 38 (1988) pp. 157-168. doi : 10.5802/aif.1127. http://gdmltest.u-ga.fr/item/AIF_1988__38_1_157_0/
[1] An almost-orthogonality principle with applications to maximal functions associated to convex bodies, B.A.M.S., 14-2 (1986), 269-273. | MR 87k:42015 | Zbl 0588.42012
. —[2] Variants of the Calderón-Zygmund theory for Lp-spaces, Revista Matemática Ibero Americana, 2-4 (1986), 381-396. | MR 89f:42011 | Zbl 0632.42013
. —[3] Personal communication.
. —[4] Maximal operators related to the Radon transform and the Calderón-Zygmund method of rotations, Duke Math. J., 53-1 (1986), 189-209. | MR 88d:42032 | Zbl 0656.42010
, AND .[5] Differentiation in lacunary directions, P.N.A.S. (USA), 75-3 (1978), 1060-1062. | MR 57 #6349 | Zbl 0391.42015
, AND . —[6] Singular integrals and differentiability properties of functions, Princeton University Press, Princeton N.J., 1970. | MR 44 #7280 | Zbl 0207.13501
. —