Soit un feuilletage singulier d’une surface compacte . Pour analyser la dynamique de , on décompose de façon canonique en sous-surfaces bordées par des courbes transverses à : les composantes de la récurrence de (ensembles quasiminimaux) sont contenues dans les “régions de récurrence” et peuvent être étudiées séparément; par contre dans les autres régions, dites “régions de passage”, la dynamique est triviale. On propose ensuite une définition des feuilletages singuliers de classe sur les surfaces, et on étudie quelles restrictions l’hypothèse que est (ou ) impose à la topologie et à la dynamique du feuilletage.
Let be a singular foliation on a compact surface . In order to analyse the dynamics of , one can canonically cut up into subsurfaces bounded by curves transverse to : the components of the recurrence of (quasiminial sets) are contained in the “regions of recurrence” and may be studied separately; on the other hand, the dynamics is trivial in the other regions (“regions of passage”). The paper also offers a definition of a singular foliation of classe on , and studies the topological and dynamical features of (or ) on , and studies the topological and dynamical features of (or ) foliations.
@article{AIF_1987__37_3_85_0, author = {Levitt, Gilbert}, title = {La d\'ecomposition dynamique et la diff\'erentiabilit\'e des feuilletages des surfaces}, journal = {Annales de l'Institut Fourier}, volume = {37}, year = {1987}, pages = {85-116}, doi = {10.5802/aif.1099}, mrnumber = {88m:57035}, zbl = {0596.57019}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1987__37_3_85_0} }
Levitt, Gilbert. La décomposition dynamique et la différentiabilité des feuilletages des surfaces. Annales de l'Institut Fourier, Tome 37 (1987) pp. 85-116. doi : 10.5802/aif.1099. http://gdmltest.u-ga.fr/item/AIF_1987__37_3_85_0/
[1] Analytic quasi-periodic curves of discontinuous type on a torus, Proc. London Math. Soc., 44 (1938), 175-215. | JFM 64.1141.02 | Zbl 0019.11503
,[2] Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures et Appl., 11 (1932), 333-375. | JFM 58.1124.04
,[3] Travaux de Thurston sur les surfaces, Astérisque, 66-67 (1979), SMF Paris. | MR 82m:57003 | Zbl 0406.00016
, , ,[4] Smoothability of Cherry flows on two-manifolds, in Geometric Dynamics, Rio 1981, Springer Lecture Notes, 1007 (1983), 308-331. | MR 85h:58148 | Zbl 0545.58039
,[5] Smoothing continuous flows and the converse of Denjoy-Schwartz theorem, Ann. Ac. Bras. de Cien., 51 (1979), 581-589. | MR 81b:58036 | Zbl 0478.58020
,[6] Bifurcations of Cherry attractors, Communication orale de De Melo.
, , ,[7] Invariant measures of flows on oriented surfaces, Soviet Math. Dokl., 14 (1973), 1104-1108. | Zbl 0298.28013
,[8] Introduction to diophantine approximation, Addison Wesley, 1966. | MR 35 #129 | Zbl 0144.04005
,[9] Pantalons et feuilletages des surfaces, Topology, 21 (1982), 9-33. | MR 83f:57017 | Zbl 0473.57014
,[10] Feuilletages des surfaces, Ann. Inst. Fourier, 32-2 (1982), 179-217. | Numdam | MR 84g:57021 | Zbl 0454.57015
,[11] Foliations and laminations on hyperbolic surfaces, Topology, 22 (1983), 119-135. | MR 84h:57015 | Zbl 0522.57027
,[12] Feuilletages des surfaces, Thèse d'état, Université Paris 7, juin 1983.
,[13] Differentiability and topology of labyrinths in the disc and annulus, Topology, 26 (1987), 173-186. | MR 89e:57025 | Zbl 0621.57013
, ,[14] Trajectories on the closed orientable surfaces, Math. Sb., 12 (54) (1943), 71-84 (en russe). | Zbl 0063.03856
,[15] Labyrinths in the disc and surfaces, Ann. of Math., 117 (1983), 1-33. | MR 84h:57016 | Zbl 0522.57028
,[16] On the number of invariant measures for flows on orientable surfaces, Math. USSR Izv., 9 (1975), 813-830. | MR 52 #12005 | Zbl 0336.28007
,[17] A generalization of a Poincaré-Bendixson theorem to closed two-dimensional manifolds, Amer. Jour. of Math., 85 (1963), 453-458. | MR 27 #5003 | Zbl 0116.06803
,[18] Asymptotic cycles, Ann. of Math., 66 (1957), 270-284. | MR 19,568i | Zbl 0207.22603
,[19] Morse foliations, Thesis, Warwick, 1976.
,[20] On the geometry and dynamics of diffeomorphisms of surfaces, preprint. | Zbl 0674.57008
,[21] The topological transformations of a simple closed curve into itself, Amer. J. Math., 57 (1935), 142-152. | JFM 61.0627.02 | Zbl 0011.03801
,[22] Quasiminimal invariants for folliations of orientable closed surfaces, preprint Rice university. | Zbl 0697.57012
,