Soit le développement en fraction continue du nombre irrationnel ; soit la suite de dénominateur des réduites successives de . Tout entier naturel se développe de manière unique sous la forme est la somme de chiffres de . La suite est équirépartie modulo 1 si est irrationnel. Nous prouvons quelques estimations de la discrépance de la suite .
If denotes the sequence of best approximation denominators to a real , and denotes the sum of digits of in the digit representation of to base , then for all irrational, the sequence is uniformly distributed modulo one. Discrepancy estimates for the discrepancy of this sequence are given, which turn out to be best possible if has bounded continued fraction coefficients.
@article{AIF_1987__37_3_1_0, author = {Larcher, Gerhard and Kopecek, N. and Tichy, R. F. and Turnwald, G.}, title = {On the discrepancy of sequences associated with the sum-of-digits function}, journal = {Annales de l'Institut Fourier}, volume = {37}, year = {1987}, pages = {1-17}, doi = {10.5802/aif.1095}, mrnumber = {89c:11119}, zbl = {0601.10038}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1987__37_3_1_0} }
Larcher, Gerhard; Kopecek, N.; Tichy, R. F.; Turnwald, G. On the discrepancy of sequences associated with the sum-of-digits function. Annales de l'Institut Fourier, Tome 37 (1987) pp. 1-17. doi : 10.5802/aif.1095. http://gdmltest.u-ga.fr/item/AIF_1987__37_3_1_0/
[1] Représentation des entiers naturels et suites uniformément équiréparties, Ann. Inst. Fourier, 32-1 (1982), 1-5. | Numdam | MR 83h:10071 | Zbl 0463.10039
,[2] Répartition de la somme des chiffres associée à une fraction continue, Bull. Soc. Roy. Liège, 52 (1982), 161-165. | MR 84e:10060 | Zbl 0497.10040
,[3] Représentations des entiers naturels et indépendance statistique 2, Ann. Inst. Fourier, 31-1 (1981), 1-15. | Numdam | MR 83e:10071b | Zbl 0437.10026
, , ,[4] Theorie der Gleichverteilung, Bibl. Inst. Mannheim-Wien-Zürich, 1979. | MR 80j:10057 | Zbl 0406.10001
,[5] α-additive Functions and Uniform Distribution modulo one, Proc. Japan. Acad. Ser. A., 60 (1984), 299-301. | MR 86d:11056 | Zbl 0556.10037
,[6] Some theorems on diophantine inequalities, Math. Centrum Amsterdam, Scriptum no. 5, 1950. | MR 12,394c | Zbl 0038.02803
,[7] Uniform distribution of sequences, John Wiley and Sons, New York, 1974. | MR 54 #7415 | Zbl 0281.10001
and ,[8] Simultaneous approximation to algebraic numbers by rationals, Acta Math., 125 (1970), 189-201. | MR 42 #3028 | Zbl 0205.06702
,[9] on the discrepancy of some special sequences, J. Number Th., 26 (1987), 68-78. | MR 88g:11048 | Zbl 0628.10052
and ,