On munit d’une structure analytique universelle l’ensemble des feuilletages holomorphes sur un espace compact normal. Par définition un feuilletage holomorphe est un sous-faisceau cohérent du faisceau tangent holomorphe stable par le crochet de Lie.
An universal analytic structure is construted on the set of (singular) holomorphic foliations on a normal compact space. Such a foliation is by definition a coherent subsheaf of the holomorphic tangent sheaf stable by the Lie-bracket
@article{AIF_1987__37_2_33_0, author = {Pourcin, Genevi\`eve}, title = {Deformations of coherent foliations on a compact normal space}, journal = {Annales de l'Institut Fourier}, volume = {37}, year = {1987}, pages = {33-48}, doi = {10.5802/aif.1085}, mrnumber = {88k:32057}, zbl = {0587.32037}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1987__37_2_33_0} }
Pourcin, Geneviève. Deformations of coherent foliations on a compact normal space. Annales de l'Institut Fourier, Tome 37 (1987) pp. 33-48. doi : 10.5802/aif.1085. http://gdmltest.u-ga.fr/item/AIF_1987__37_2_33_0/
[1] Structure of foliation singularities, Advances in Math., 15 (1975), 361-374. | MR 51 #13298 | Zbl 0296.57007
,[2] Holomorphe blatterungen mit singularitäten, Math. Gottingensis, heft 5 (1985).
and ,[3] Faisceaux analytiques cohérents, C.I.M.E., Edizioni Cremonese, 1963. | Zbl 0178.42701
,[4] Le problème des modules pour les sous-espaces analytiques..., Ann. Inst. Fourier, XVI, Fasc. 1 (1966), 1-96. | Numdam | Zbl 0146.31103
,[5] Frobenius avec singularités-codimension 1, Pub I.H.E.S., n°46 (1976). | Numdam | MR 58 #22685a | Zbl 0355.32013
,[6] Sous-espaces privilégiés d'un polycylindre, Ann. Inst. Fourier, XXV, Fasc. 1 (1975), 151-193. | Numdam | MR 52 #11118 | Zbl 0297.32010
,[7] Gap-sheaves and extension of coherent analytic subsheaves, Lect. Notes, 172 (1971). | MR 44 #4240 | Zbl 0208.10403
et ,[8] Singularities of complex analytic foliations, Proceedings of Symposia in Pure mathematics, Vol. 40 (1983), Part.2 | MR 85a:32029 | Zbl 0552.32008
,