Pseudo-immersions
Joris, Henri ; Preissmann, Emmanuel
Annales de l'Institut Fourier, Tome 37 (1987), p. 195-221 / Harvested from Numdam

Si f est un germe 𝒞 de (R n ,0), on dira que f est une pseudo-immersion (on notera fΨ n,m ) si tous les germes continus g de (R,0) dans (R m ,0), tels que fg𝒞 sont eux-mêmes 𝒞 . On détermine complètement Ψ n,1 , et on montre que Ψ 2,2 = Diff 2 . Par ailleurs, si K=R ou C et si g est une application de K dans K telle que g 2 et g 3 sont 𝒞 , alors g est aussi 𝒞 . Si K=H (corps des hamiloniens) alors cette implication n’est plus vraie.

Let f:(R m ,0)(R n ,0) be a 𝒞 -germ. f is said to be a pseudo-immersion (noted fΨ n,m ) if for continuous germ g:(R,0)(R m ,0), fg𝒞 implies g𝒞 . Ψ n,1 , is completely determined, for each natural n,Ψ 2,2 is shown to coincide with Diff 2 . If K=R or C and g:KK is such that g 2 and g 3 are in 𝒞 . If K=H (field of Hamiltonians), a counter-exemple shows that this implication is no more valid.

@article{AIF_1987__37_2_195_0,
     author = {Joris, Henri and Preissmann, Emmanuel},
     title = {Pseudo-immersions},
     journal = {Annales de l'Institut Fourier},
     volume = {37},
     year = {1987},
     pages = {195-221},
     doi = {10.5802/aif.1092},
     mrnumber = {88e:57028},
     zbl = {0596.58004},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_1987__37_2_195_0}
}
Joris, Henri; Preissmann, Emmanuel. Pseudo-immersions. Annales de l'Institut Fourier, Tome 37 (1987) pp. 195-221. doi : 10.5802/aif.1092. http://gdmltest.u-ga.fr/item/AIF_1987__37_2_195_0/

[1] R. Narasimhan, Analysis on Real and Complex Manifolds, Second edition, Masson, Paris, 1973.

[2] H. Joris, Une C∞-application non-immersive qui possède la propriété universelle des immersions, Archiv der Mathematik, 39 (1982), 269-277. | MR 84f:58017 | Zbl 0504.58007

[3] J. Boman, Differentiability of a function and of its compositions with functions of one variable, Math. Scand., 20 (1967), 249-268. | MR 38 #6009 | Zbl 0182.38302

[4] J. Duncan, S. G. Krantz, H. R. Parks, Non-linear Conditions for Differentiability of Functions, Journal d'Analyse Math., 45 (1985), 46-68. | MR 87i:26027 | Zbl 0632.58008

[5] C. G. Gibson, Singular Points of Smooth Mappings, Pitman, London, 1979. | MR 80j:58011 | Zbl 0426.58001

[6] S. S. Abhyankar, Lectures on Expansion Techniques in Algebraic Geometry, Tata Institute, Bombay, 1977. | MR 80m:14016 | Zbl 0818.14001

[7] O. Zariski, P. Samuel, Commutative Algebra, Vol. II, Van Nostrand, Princeton 1960. | MR 22 #11006 | Zbl 0121.27801

[8] N. Bourbaki, Algèbre Commutative, Chap. 7, Hermann, Paris, 1965. | Zbl 0141.03501

[9] R. Narasimhan, Complex Analysis in One Variable, Birkhäuser, Boston, 1985. | MR 87h:30001 | Zbl 0561.30001