Si est un germe de , on dira que est une pseudo-immersion (on notera ) si tous les germes continus de dans , tels que sont eux-mêmes . On détermine complètement , et on montre que . Par ailleurs, si ou et si est une application de dans telle que et sont , alors est aussi . Si (corps des hamiloniens) alors cette implication n’est plus vraie.
Let be a -germ. is said to be a pseudo-immersion (noted ) if for continuous germ , implies . , is completely determined, for each natural is shown to coincide with . If or and is such that and are in . If (field of Hamiltonians), a counter-exemple shows that this implication is no more valid.
@article{AIF_1987__37_2_195_0, author = {Joris, Henri and Preissmann, Emmanuel}, title = {Pseudo-immersions}, journal = {Annales de l'Institut Fourier}, volume = {37}, year = {1987}, pages = {195-221}, doi = {10.5802/aif.1092}, mrnumber = {88e:57028}, zbl = {0596.58004}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1987__37_2_195_0} }
Joris, Henri; Preissmann, Emmanuel. Pseudo-immersions. Annales de l'Institut Fourier, Tome 37 (1987) pp. 195-221. doi : 10.5802/aif.1092. http://gdmltest.u-ga.fr/item/AIF_1987__37_2_195_0/
[1] Analysis on Real and Complex Manifolds, Second edition, Masson, Paris, 1973.
,[2] Une C∞-application non-immersive qui possède la propriété universelle des immersions, Archiv der Mathematik, 39 (1982), 269-277. | MR 84f:58017 | Zbl 0504.58007
,[3] Differentiability of a function and of its compositions with functions of one variable, Math. Scand., 20 (1967), 249-268. | MR 38 #6009 | Zbl 0182.38302
,[4] Non-linear Conditions for Differentiability of Functions, Journal d'Analyse Math., 45 (1985), 46-68. | MR 87i:26027 | Zbl 0632.58008
, , ,[5] Singular Points of Smooth Mappings, Pitman, London, 1979. | MR 80j:58011 | Zbl 0426.58001
,[6] Lectures on Expansion Techniques in Algebraic Geometry, Tata Institute, Bombay, 1977. | MR 80m:14016 | Zbl 0818.14001
,[7] Commutative Algebra, Vol. II, Van Nostrand, Princeton 1960. | MR 22 #11006 | Zbl 0121.27801
, ,[8] Algèbre Commutative, Chap. 7, Hermann, Paris, 1965. | Zbl 0141.03501
,[9] Complex Analysis in One Variable, Birkhäuser, Boston, 1985. | MR 87h:30001 | Zbl 0561.30001
,