Nous démontrons que la fibration orientable de fibre ayant même type d’homotopie que l’espace homogène avec rang est totalement non homologue à zéro pour les coefficients rationnels. Nous utilisons le jacobien formé par des poloynômes invariants pour le groupe de Weyl de . Nous démontrons également que le résultat est valable pour les coefficients mod. si ne divise pas l’ordre du groupe de Weyl de .
We show that an orientable fibration whose fiber has a homotopy type of homogeneous space with rank is totally non homologous to zero for rational coefficients. The Jacobian formed by invariant polynomial under the Weyl group of plays a key role in the proof. We also show that it is valid for mod. coefficients if does not divide the order of the Weyl group of .
@article{AIF_1987__37_1_81_0, author = {Shiga, H. and Tezuka, M.}, title = {Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians}, journal = {Annales de l'Institut Fourier}, volume = {37}, year = {1987}, pages = {81-106}, doi = {10.5802/aif.1078}, mrnumber = {89g:55019}, zbl = {0608.55006}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1987__37_1_81_0} }
Shiga, H.; Tezuka, M. Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians. Annales de l'Institut Fourier, Tome 37 (1987) pp. 81-106. doi : 10.5802/aif.1078. http://gdmltest.u-ga.fr/item/AIF_1987__37_1_81_0/
[1] Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207. | MR 51508 | MR 14,490e | Zbl 0052.40001
,[2] Les sous-groupes fermés de rang maximal de Lie clos, Comm. Math. Helv., 23 (1949), 200-221. | MR 32659 | Zbl 0034.30701
and ,[3] Simple groups of Lie type, John Wilely and Sons, London, 1972. | MR 407163 | Zbl 0248.20015
,[4] Invariants of finite groups generated by reflections, Amer. J. Math., 77 (1955), 778-782. | MR 72877 | MR 17,345d | Zbl 0065.26103
,[5] The product of the generators of a finite group generated by reflections, Duke Math. J., 18 (1951), 391-441. | MR 45109 | MR 13,528d | Zbl 0044.25603
,[6] Finitess in the minimal models of Sullivan, Trans. A.M.S., 230 (1977), 173-199. | MR 461508 | MR 57 #1493 | Zbl 0364.55014
,[7] The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), 997-1032. | MR 114875 | MR 22 #5693 | Zbl 0099.25603
,[8] Commutative Algebra, second edition, Benjamin (1980). | MR 575344 | MR 82i:13003 | Zbl 0441.13001
,[9] Rational Universal fibration and Flag manifolds, Math. Ann., 258 (1982), 329-340. | MR 649203 | MR 83g:55009 | Zbl 0466.55012
,[10] The mod 2 cohomology rings of extra-special 2-groups and the Spinor groups, Math. Ann., 194 (1971), 197-212. | MR 44 #7582 | Zbl 0225.55015
,[11] Deformation theory and rational homotopy type, (to appear).
and ,[12] Lectures on Chevalley groups, Yale Univ. (1967).
,[13] Infinitesimal computations in Topology, Publ. I.H.E.S., 47 (1977), 269-332. | Numdam | MR 58 #31119 | Zbl 0374.57002
,[14] Homotopie rationnelle des fibrations de Serre, Ann. Inst. Fourier, 31-3 (1981), 71-90. | Numdam | MR 83c:55016 | Zbl 0446.55009
,[15] Quelques questions commentées sur la fibre d'Eilengerg-Moore d'une fibration de Serre, Publ. Lille, 3, no 6 (1981).
,[16] Classifying maps and homogeneous spaces, (preprint).
,[17] A note on the cohomology of a fiber space whose fiber is a homogeneous space, (preprint). | Zbl 0696.55019
, and ,[18] Cohomology automorphisms of some Homogeneous spaces, to appear in Topology and its applications (Singapore conference volume). | Zbl 0623.57031
and ,