Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians
Shiga, H. ; Tezuka, M.
Annales de l'Institut Fourier, Tome 37 (1987), p. 81-106 / Harvested from Numdam

Nous démontrons que la fibration orientable de fibre ayant même type d’homotopie que l’espace homogène G/U avec rang G= rang U est totalement non homologue à zéro pour les coefficients rationnels. Nous utilisons le jacobien formé par des poloynômes invariants pour le groupe de Weyl de G. Nous démontrons également que le résultat est valable pour les coefficients mod.p si p ne divise pas l’ordre du groupe de Weyl de G.

We show that an orientable fibration whose fiber has a homotopy type of homogeneous space G/U with rank G= rang U is totally non homologous to zero for rational coefficients. The Jacobian formed by invariant polynomial under the Weyl group of G plays a key role in the proof. We also show that it is valid for mod.p coefficients if p does not divide the order of the Weyl group of G.

@article{AIF_1987__37_1_81_0,
     author = {Shiga, H. and Tezuka, M.},
     title = {Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians},
     journal = {Annales de l'Institut Fourier},
     volume = {37},
     year = {1987},
     pages = {81-106},
     doi = {10.5802/aif.1078},
     mrnumber = {89g:55019},
     zbl = {0608.55006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1987__37_1_81_0}
}
Shiga, H.; Tezuka, M. Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians. Annales de l'Institut Fourier, Tome 37 (1987) pp. 81-106. doi : 10.5802/aif.1078. http://gdmltest.u-ga.fr/item/AIF_1987__37_1_81_0/

[1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207. | MR 51508 | MR 14,490e | Zbl 0052.40001

[2] A. Borel and J.D. Siebenthal, Les sous-groupes fermés de rang maximal de Lie clos, Comm. Math. Helv., 23 (1949), 200-221. | MR 32659 | Zbl 0034.30701

[3] R.W. Cater, Simple groups of Lie type, John Wilely and Sons, London, 1972. | MR 407163 | Zbl 0248.20015

[4] C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math., 77 (1955), 778-782. | MR 72877 | MR 17,345d | Zbl 0065.26103

[5] H. Coxeter, The product of the generators of a finite group generated by reflections, Duke Math. J., 18 (1951), 391-441. | MR 45109 | MR 13,528d | Zbl 0044.25603

[6] S. Halperin, Finitess in the minimal models of Sullivan, Trans. A.M.S., 230 (1977), 173-199. | MR 461508 | MR 57 #1493 | Zbl 0364.55014

[7] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), 997-1032. | MR 114875 | MR 22 #5693 | Zbl 0099.25603

[8] H. Matsumura, Commutative Algebra, second edition, Benjamin (1980). | MR 575344 | MR 82i:13003 | Zbl 0441.13001

[9] W. Meier, Rational Universal fibration and Flag manifolds, Math. Ann., 258 (1982), 329-340. | MR 649203 | MR 83g:55009 | Zbl 0466.55012

[10] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the Spinor groups, Math. Ann., 194 (1971), 197-212. | MR 44 #7582 | Zbl 0225.55015

[11] M. Schlessinger and J. Stascheff, Deformation theory and rational homotopy type, (to appear).

[12] R. Steinberg, Lectures on Chevalley groups, Yale Univ. (1967).

[13] D. Sullivan, Infinitesimal computations in Topology, Publ. I.H.E.S., 47 (1977), 269-332. | Numdam | MR 58 #31119 | Zbl 0374.57002

[14] J.C. Thomas, Homotopie rationnelle des fibrations de Serre, Ann. Inst. Fourier, 31-3 (1981), 71-90. | Numdam | MR 83c:55016 | Zbl 0446.55009

[15] J.C. Thomas, Quelques questions commentées sur la fibre d'Eilengerg-Moore d'une fibration de Serre, Publ. Lille, 3, no 6 (1981).

[16] H. Shiga, Classifying maps and homogeneous spaces, (preprint).

[17] A. Kono, H. Shiga and M. Tezuka, A note on the cohomology of a fiber space whose fiber is a homogeneous space, (preprint). | Zbl 0696.55019

[18] H. Shiga and M. Tezuka, Cohomology automorphisms of some Homogeneous spaces, to appear in Topology and its applications (Singapore conference volume). | Zbl 0623.57031