Soit une sous-variété totalement réelle de dimension 2 et classe dans . Une application continue de disque-unité fermé dans , qui est holomorphe sur et applique sa frontière dans , est appelée un disque analytique avec frontière dans . Etant donné un disque initial avec frontière dans , on détermine l’existence des disques près de avec les frontières dans les petites perturbations de à l’aide de la classe d’homologie de courbe dans . On démontre aussi un théorème de régularité pour des familles des disques et on construit un tore totalement réel de dimension 3 dans avec une étrange enveloppe convexe polynomiale.
Let be a two dimensional totally real submanifold of class in . A continuous map of the closed unit disk into that is holomorphic on the open disk and maps its boundary into is called an analytic disk with boundary in . Given an initial immersed analytic disk with boundary in , we describe the existence and behavior of analytic disks near with boundaries in small perturbations of in terms of the homology class of the closed curve in . We also prove a regularity theorem for immersed families of analytic disks, consider several examples, and construct a totally real three torus in with a bizzare polynomially convex hull.
@article{AIF_1987__37_1_1_0, author = {Forstneric, Franc}, title = {Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$}, journal = {Annales de l'Institut Fourier}, volume = {37}, year = {1987}, pages = {1-44}, doi = {10.5802/aif.1076}, mrnumber = {88j:32019}, zbl = {0583.32038}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1987__37_1_1_0} }
Forstneric, Franc. Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$. Annales de l'Institut Fourier, Tome 37 (1987) pp. 1-44. doi : 10.5802/aif.1076. http://gdmltest.u-ga.fr/item/AIF_1987__37_1_1_0/
[1] Hulls of deformations in Cn, Trans. Amer. Math. Soc., 266 (1981), 243-257. | MR 82j:32035 | Zbl 0493.32017
,[2] A note on polynomially convex hulls, Proc. Amer. Math. Soc., 33 (1972), 389-391. | MR 45 #3757 | Zbl 0239.32013
,[3] Polynomial hulls with convex fibers, Math. Ann., 271 (1985), 99-109. | MR 86i:32025 | Zbl 0538.32011
and ,[4] Stability of the polynomial hull of T2, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 8 (1982), 311-315. | Numdam | Zbl 0472.32012
,[5] Levi flat hypersurfaces in C2 with prescribed boundary : Stability, Annali Scuola Norm. Sup. Pisa cl. Sci., 9 (1982), 529-570. | Numdam | MR 85d:32029 | Zbl 0574.32019
,[6] Envelopes of holomorphy of certain two-spheres in C2, Amer. J. Math., 105 (1983), 975-1009. | MR 84k:32016 | Zbl 0596.32019
and ,[7] Differentiable manifolds in complex Euclidean spaces, Duke Math. J., 32 (1965), 1-21. | MR 34 #369 | Zbl 0154.08501
,[8] CR extensions near a point of higher type, Duke Math. J., 52 (1985), 67-102. | Zbl 0573.32019
and ,[9] Cohomology of maximal ideal spaces, Bull Amer. Math. Soc., 67 (1961), 515-516. | MR 24 #A440 | Zbl 0107.09501
,[10] Calcul Différentiel, Hermann, Paris 1967. | MR 36 #6243 | Zbl 0156.36102
,[11] A theorem on orientable surfaces in four-dimensional space, Comm. Math. Helv., 25 (1951), 205-209, North Holland, Amsterdam 1975. | MR 13,492d | Zbl 0043.38403
and ,[12] Regularity of boundaries of analytic sets, (Russian) Math. Sb (N.S.) 117 (159), (1982), 291-334. English translation in Math. USSR Sb., 45 (1983), 291-336. | MR 83f:32009 | Zbl 0525.32005
,[13] Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., 140 (1960), 94-123. | MR 26 #6435 | Zbl 0095.28004
and ,[14] Maximum modulus sets, Ann. Inst. Fourier, 31-3 (1981), 37-69. | Numdam | MR 83d:32019 | Zbl 0439.32007
and ,[15] The Theory of Hp spaces, Academic Press, New-York and London, 1970. | MR 42 #3552 | Zbl 0215.20203
,[16] Stable Mappings and their Singularities, Graduate Texts in Mathematics, 41, Springer-Verlag, New-York, Heidelberg, Berlin 1973. | MR 49 #6269 | Zbl 0294.58004
and ,[17] Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold, Math. Ann., 197 (1972), 287-318. | MR 46 #9379 | Zbl 0246.32019
and ,[18] Grundzüge einer allgemeiner Theorie der linearen Integralgleichungen, Leipzig, 1912.
,[19] Families of analytic disks in Cn with boundaries in a prescribed CR manifold, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 327-380. | Numdam | Zbl 0399.32008
and ,[20] The local hull of holomorphy of a surface in the space of two complex variables, Invent. Math., 67 (1982), 1-21. | MR 84c:32014 | Zbl 0489.32007
and ,[21] On the hull of holomorphy of n-manifold in Cn, Annali Scuola Norm. Sup. Pisa sci., 11 (1984), 261-280. | Numdam | MR 86d:32019 | Zbl 0558.32006
and ,[22] La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109 (1981), 427-474. | Numdam | MR 84d:32036 | Zbl 0492.32025
,[23] Integral Equations and their Applications, Pergamon Press, Oxford, 1966. | MR 34 #1811 | Zbl 0137.30502
,[24] Totally real Klein bottles in C2, Proc. Amer. Math. Soc., 82 (1981), 653-654. | MR 82i:32012 | Zbl 0483.32013
,[25] The Topology of Fiber Bundles, Princeton University Press, Princeton, New Jersey, 1951. | Zbl 0054.07103
,[26] A hull with no analytic structure, J. Math. Mech., 12 (1963), 103-112. | MR 26 #627 | Zbl 0113.29101
,[27] Minimal surfaces in Kähler manifolds, Preprint. | Zbl 0561.53054
,[28] The Euler and Pontrjagin numbers of an n-manifold in Cn, Preprint. | Zbl 0566.32015
,[29] Lectures on Symplectic Manifolds, Regional Conference Series in Mathematics 29, Amer. Math. Soc., Providence, R.I., 1977. | MR 57 #4244 | Zbl 0406.53031
,[30] Polynomially convex hulls and analyticity, J. Math. Mech., 20 (1982), 129-135. | MR 84b:32021 | Zbl 0491.32013
,[31] A class of nonlinear Riemann-Hilbert problems for holomorphic functions, Math. Nachr., 116 (1984), 89-107. | MR 86b:30065 | Zbl 0554.30019
,[32] Polynomially convex hulls with piecewise smooth boundaries, Math. Ann., 276 (1986), 97-104. | MR 87m:32036 | Zbl 0585.32016
,[33] On the nonlinear Riemann - Hilbert problem. To appear.
,